Teaching archive 2023 (1)16.01. : How do we express the efficiency of an algorithm involving random events? (0)2022 (9)09.04. : Appendix: loose ends (0)06.04. : Ilyashenko fields based on convergent transmonomials (0)04.04. : Holomorphic continuations of definable germs (0)30.03. : Some holomorphic continuations (0)28.03. : The Hardy field of $\Ranexp$ (0)23.03. : Ilyashenko algebras based on log monomials (0)21.03. : Almost regular germs (0)16.03. : Back to reality (0)14.03. : Dulac’s Problem (0)2019 (5)15.04. : Building Toffoli gates from 1-gates and CNOT (0)20.03. : Designing $(n+1)$-gates using 1-gates and Toffoli gates (0)19.03. : Controlled 1-gates (0)19.03. : Toffoli gates (0)18.03. : Simulating classical probabilistic algorithms (0)2016 (1)21.01. : Divisibility for polynomials (0)2015 (40)18.09. : A remark on reversible gates (0)08.05. : Two consequences for expansions of the real field (0)21.04. : Second theorem of the complement (0)21.04. : Global sub-$\C$-sets (0)16.04. : Fiber cutting (0)13.04. : Restricted $\C$-functions and o-minimality (0)09.04. : Semi-$\C$-sets (0)09.04. : How do we use normalization? (0)01.04. : Normalization: the general case (0)31.03. : Normalization: the general setup (2)28.03. : A very brief history of this blog (0)25.03. : Normalization in two variables (0)24.03. : Tschirnhausen transformation (0)20.03. : Blow-up substitutions (0)20.03. : Normal series (6)19.03. : Functions defined by convergent power series (3)16.03. : Restricted analytic functions (0)11.03. : Pfaffian closure (0)10.03. : First theorem of the complement (0)05.03. : Closure and boundary of a bounded $\Lambda^\infty$-set (0)03.03. : A first set of axioms for o-minimality (0)01.03. : Hausdorff limits (0)27.02. : Rolle sets (0)22.01. : Dimension (0)20.01. : Proof of the cell decomposition theorem (0)20.01. : Cell decomposition and uniform finiteness (0)19.01. : Cells (2)16.01. : Peter’s Solution to Exercise 1 (0)15.01. : Decomposing definable subsets of the plane (0)14.01. : Uniform finiteness for sparse subsets of the plane (2)14.01. : Sparse subsets of the plane (2)14.01. : Definable closure (0)13.01. : An “ordered Ramsey” theorem (7)13.01. : Reduction of the Monotonicity Lemma (3)08.01. : The Monotonicity Theorem (2)08.01. : O-minimality and uniform finiteness (0)08.01. : O-minimal structures (0)08.01. : Finite fibers of constant size (8)07.01. : Expansions of dense linear orders (5)06.01. : Notes on real closed fields (0) Share this:ShareClick to email a link to a friend (Opens in new window)Click to share on Facebook (Opens in new window) July 9, 2019 Patrick