The Monotonicity Theorem
Let ${\cal M}$ be an o-minimal expansion of a dense linear order $(M,\lt)$. Let $f:I \longrightarrow M$ be definable, with $I = (a,b)$ an interval in $M$. Definition We call $f$ strictly monotone if $f$ is either constant, or strictly increasing, or strictly decreasing. Our first goal is to prove the Monotonicity Theorem There are…