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Abstract

This project studies the zero forcing number, utilizing the colour-change rule, a graph
parameter originally introduced to help solve a minimum rank problem. Since its in-
troduction, studies surrounding the zero forcing number have produced some interesting
results. This paper begins by reviewing graph theory concepts, and discusses the family
of circulant graphs. The colour-change rule, and past findings about the zero forcing
number for general and circulant graphs are presented. Once the preliminary topics are
covered, we focus on the family of circulant graphs and determine the zero forcing number
for various circulant families.
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CHAPTER 1

Introduction

This project looks at families of circulant graphs and studies their zero forcing number.
The zero forcing number of a finite simple graph G is an invariant of a graph that was first
introduced in [1]. Although it was originally designed to investigate the minimum rank
problem of graphs, it has been shown to be an interesting property on its own right. It is
of interest to determine the zero forcing number (and a related invariant, the propagation
time) for specific families of graphs. One family of graphs, the circulant graphs, is a
k-regular family of graphs with lots of symmetry. To date, the zero forcing number has
only been computed for a few members of this family. We wish to determine the zero
forcing number for a few more members.

In this chapter we will first introduce the required graph theory background. We
will then introduce circulant graphs as well as present some of their properties which
are useful for generalizing results. Then the zero forcing number and the associated
propagation time will be introduced. After the basic concepts are covered, we give a brief
review of what is known about the zero forcing number of a graph. The second chapter
will focus on our new results. We look at a few families of circulant graphs and calculate
the zero forcing number and propagation time building on past research. The appendices
contain tables listing the calculated the zero forcing numbers and propagation times for
a all circulant graphs on up to 16 vertices, as well as other families of circulant graphs.
In these tables, there are a few patterns which go unproven in this paper. These are
presented as conjectures at the end of chapter 2.

1. Graph Theory Background

We begin with a review of the relevant background of graph theory. The textbook
Pearls in Graph Theory by Nora Hartsfield and Gerhard Ringel [11] will be our primary
reference for graph theory terminology.

Definition 1.1. A graph G is a pair of sets (V (G), E(G)) where V (G) = {v0, v1, . . . , vn−1}
is nonempty, and E(G) is a (possibly empty) set of unordered pairs of elements of V (G).
The elements of V (G) are called the vertices of G, and the elements of E(G) are called
the edges of G.

Definition 1.2. A simple graph is defined as a graph which has no edges which are
loops or multiple edges between a pair of vertices.
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1. GRAPH THEORY BACKGROUND 2

Let G be a finite simple graph with vertex set V (G) and edge set E(G). The vertex
set V (G) is a collection of points or nodes in the plane, usually labeled {v0, v1, . . . , vn−1}
for some n ∈ N. An edge in E(G) is pictorially expressed as a line or connection between
two of these points.

Definition 1.3. The order of a graph G is the number of vertices of G, denoted as
|G|.

Definition 1.4. An edge is incident to a vertex if the edge has the vertex as one of
its endpoints. For example, the edge {vi, vj} is incident to the vertices vi, vj ∈ V (G).

Because there is no one method for drawing a graph G, there is the possibility that G
can be drawn in many different ways. We use the following definition to determine if two
graph are the same.

Definition 1.5. Two graphs G1 and G2 are said to be isomorphic, denoted G1 ' G2,
if there exists a bijective function f : V (G1) → V (G2) such that {vi, vj} ∈ E(G1) if and
only if {f(vi), f(vj)} ∈ E(G2).

Definition 1.6. If vi and vj are vertices of V (G), we say that vi is adjacent to vj if
there is an edge {vi, vj} ∈ E(G) between vi and vj. We say that vj is a neighbour of vi.

Definition 1.7. The degree of a vertex v ∈ V (G) is the number of edges in E(G)
which are incident to v. The minimum degree of a vertex in a graph G is denoted δ(G).

Example 1.8. The graph in Figure 1 has vertices v0 through v5 with varying degrees:

• vertex v6 has degree equal to 1
• vertices v1 and v3 have degree equal to 2
• vertices v2, v4, and v5 have degree equal to 3

v5

v3

v4

v0

v1

v2

Figure 1. A graph with varying vertex degree

Definition 1.9. A graph G is said to be regular of degree k, or k-regular, if every
vertex v ∈ V (G) has degree equal to k. A 3-regular graph is also called a cubic graph.

Definition 1.10. A graph G is vertex-transitive if for any two vertices v1, and v2 ∈
V (G), there exists an automorphism f : V (G)→ V (G) such that f(v1) = v2.
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Figure 2. The graph P5

There are a few important basic families of graphs from which the family of circulant
graphs are built upon. The following examples will be used as a beginning step to help
understand the constructions which follow.

Definition 1.11. A path on n vertices is the graph Pn such that E(Pn) = {{vi, vi+1} :
i = 0, 1, . . . , n− 2}. Figure 2 shows the path graph P5 on five vertices.

Definition 1.12. A cycle on n vertices is the graph Cn such that E(Cn) = {{vi, vi+1} :
i = 0, 1, . . . , n− 2} ∪ {{vn, v0}}. See Figure 5 for an example of C9.

An example of a regular graph is the family of cycle graphs Cn. Every vertex in a
cycle will have degree equal to two, so every cycle graph is 2-regular. See Figure 3 for an
example of the cycle graph C3, which is a 2-regular graph on three vertices.

Figure 3. The 2-regular cycle graph C3.

Definition 1.13. A complete graph on n vertices is the graph Kn such that E(G) =
{{vi, vj} : 0 ≤ i < j ≤ n− 1}. See Figure 6 for an example of K9.

Definition 1.14. A graph G′ = (V (G′), E(G′)) is a subgraph of a graph G =
(V (G), E(G)) if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).

Example 1.15. For any n ∈ N, the graph Pn is a subgraph of Cn, which is a subgraph
of Kn, since E(Pn) ⊆ E(Cn) ⊆ E(Kn).

Definition 1.16. A tree is a connected graph which contains no subgraph isomorphic
to a cycle.

Definition 1.17. A graph G is bipartite if the vertex set V (G) can be partitioned
into two disjoint non-empty subsets U,W ⊂ V (G), such that every edge in E(G) has
one incident vertex in U and the other in W . A complete bipartite graph is the bipartite
graph Ka,b = (U ∪W,E(G)) such that |U | = a, |W | = b and E(G) = {{u, v} : u ∈ U and
v ∈ V }.

Definition 1.18. A walk in a graph G is an alternating sequence of vertices vi ∈ V (G)
and edges ei ∈ E(G), e1v1e2v2 . . . en−1vn−1envn, such that every edge ei is incident with
vertices vi and vi+1, and vi 6= vi+1.
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Figure 4. The Cartesian product of C3 and P5 results in the graph shown, C3�P5.

Definition 1.19. A graph G is said to be connected if for every pair of vertices
u, v ∈ V (G), there is a walk from u to v. A graph is disconnected if it is not connected.

Definition 1.20. In a disconnected graph G, the subgraphs that are connected and
not contained in any larger connected subgraph are called the components of G.

Using the above notion, this project will only focus on connected graphs.

Definition 1.21. The Cartesian product of two graphs G and H, denoted G�H, is
the graph with vertex set V (G)× V (H) such that (u, v) is adjacent to (u′, v′) if and only
if u = u′ and {v, v′} ∈ E(H), or v = v′ and {u, u′} ∈ E(G).

Example 1.22. An example of the Cartesian product of two graphs is the product
C3�P5. See Figure 4.

Example 1.23. Another example of the Cartesian product of two graphs is the prod-
uct Kn�Km. The resulting graph is referred to as the Rook’s graph when m = n = 8.
The Rook’s graph depicts the possible legal moves of a rook chess piece on a chessboard.

2. Circulant Graphs

This section defines the construction and notation of circulant graphs. After the basic
definitions are covered, a few properties will be presented.

Definition 1.24. We say that the graph G on n vertices with vertex set V (G) =
{v0, v1, . . . , vn−1} is a circulant graph if E(G) is generated by a set S ⊆ {1, 2, . . . , bn

2
c}

where E(G) = {{vi, vi+j}|i ∈ {0, . . . , n − 1} and j ∈ S} where we take the subscript
addition modulo n. We denote a circulant graph on n vertices with the set S as Cn(S).

The standard notation will be adjusted for simplicity purposes. For any S = {s1, . . . , st} ⊆
{1, 2, . . . , bn

2
c}, we usually simplify our notation and write Cn(s1, . . . , st) instead of Cn({s1, . . . , st}).

Because circulant graphs have cyclic properties, we note that all vertex subscripts and
labels are taken modulo |G|.

Example 1.25. An example of a circulant graph is the cycle graph Cn, which is
equivalent to the circulant graph on n vertices with the set S = {1}. In other words,
Cn ' Cn(1), where E(Cn(1)) = {{vi, vi+1}|i ∈ {0, . . . , n − 1}}. Note that since addition
is modulo n, E(Cn(1)) = {{v0, v1}, {v1, v2}, . . . , {vn−2, vn−1}, {vn−1, v0}}. In Figure 5 is
the cycle graph on nine vertices C9 ' C9(1).
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Figure 5. The circulant graph C9(1) ' C9.

Example 1.26. The family of complete graphs Kn are also examples of circulant
graphs. In particular, the set S = {1, . . . , bn

2
c}, and Kn ' Cn(1, . . . , bn

2
c). Figure 6 is the

circulant complete graph on 9 vertices K9 ' C9(1, 2, 3, 4).

Figure 6. The circulant graph C9(1, 2, 3, 4) ' K9.

By construction, circulant graphs are all vertex-transitive and k-regular for some k
based on the size of S.

Lemma 1.27. Consider G = Cn(s1, . . . , sa) such that s1 < s2 < . . . < sa.

• If n is even and sa = n
2
, then G is (2a− 1)-regular.

• Otherwise, G is 2a-regular.

Proof. Consider a circulant graph G = Cn(S) with a set S = {s1, . . . , sa} such that
s1 < s2 < . . . < sa. If |G| = n is odd, then no element of S can be equal to n

2
. So the

degree of each vertex in G will be equal to 2a. Indeed, for each vi ∈ V (G), vi will be
adjacent to {vi−sa , . . . , vi−s1 , vi+s1 , . . . , vi+sa}.

If sa <
n
2

and n is even, then the degree of each vertex will be equal to 2a and G is
2a-regular.

If |G| = n is even, the degree of the vertices will vary depending on sa, the largest
element of S. The element sa = n

2
constructs a set of edges ∈ E(G) such that for a vertex

vi ∈ V (G) both {{vi, vi+sa}, {vi, vi−sa}} ∈ E(G). However, when n is even vi+n
2

= vi−n
2

when taken modulo n. Thus sa only creates a single edge in E(G). Therefore, if sa = n
2
,

then the degree of a given vertex in G will be equal to 2a−1, and G is (2a−1)-regular. �

This notion will be very useful when determining the zero forcing number of a circulant
graph G. The regularity of a graph will later on be helpful for providing a lower bound.
Another important concept to remember when working with circulant graphs is the idea
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of connectedness. Depending on the set S and the number of vertices of a circulant graph
Gn(S), the graph can be disconnected, we arrive at the following theorem which was
presented in [2].

Theorem 1.28. [2] If 1 < s1, s2, . . . , st < n, then the circulant graph G = Cn(s1, s2, . . . , st),
is disconnected if and only if gcd(n, s1, s2, . . . , st) 6= 1.

When working with circulant graphs, it is possible that two graphs are isomorphic. To
prove that two graphs G and H are isomorphic, we need to show there exists an bijection
f : V (G)→ V (H) such that {vi, vj} ∈ E(G) if and only if {f(vi), f(vj)} ∈ E(H).

Theorem 1.29. [2] Let G = (V (G), E(G)) and H = (V (H), E(H)) be two circulant
graphs with vertex sets V (G) and V (H), where |V (G)| = |V (H)| = n ≥ 1. The function
f : Zn → Zn, defined by f(x) = kx, where gcd(k, n) = 1, is a graph isomorphism between
G and H.

Observation 1.30. [2] Let n > 1. When operating on circulant graphs, the graph
isomorphism f : Zn → Zn, defined by f(x) = kx, where gcd(k, n) = 1, sends Cn(s1, s2) to
Cn(ks1, ks2).

Although Observation 1.30 is only proven in [2] with two values s1 and s2, the bijection
is defined based on the values of n and k, and so the set S can have any number of elements.
Thus we have the following lemma.

Lemma 1.31. [2] If gcd(k, n) = 1, then Cn(s1, s2, . . . , sa) ' Cn(ks1, ks2, . . . , ksa).

Proof. We verify this fact using the bijection f : Zn → Zn, defined by f(x) = kx. �

It has been shown in [10] that a family of circulant graphs are bipartite graphs.

Theorem 1.32. [10] Let G = C2n(a1, . . . , at) be a connected circulant. Then G is
bipartite if and only if a1, . . . , at are odd.

3. Zero Forcing and Propagation Time

For a graph G, we consider a colouring of the vertex set V (G) with two colours,
for example, black and white. The concept of zero forcing uses the graph propagation
algorithm commonly referred to as the colour-change rule, defined below. The concept
of the zero forcing number was introduced formally in [1] to provide a lower bound for a
minimum rank problem.

Definition 1.33. [1] Let G = (V (G), E(G)) be a finite simple graph.

• Colour-change rule: If G is a graph with each vertex coloured either black or
white, and if vi is a black vertex of G, and exactly one neighbour vj of vi is white,
then change the colour of vj to black.
• Given a colouring of G, the derived colouring is the result of applying the colour-

change rule until no more changes are possible.
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• A zero forcing set for a graph G is a subset of vertices F ⊆ V (G) such that if
initially the vertices vi ∈ F are coloured black, and the remaining vertices are
coloured white, then the derived colouring of G is all black.
• The zero forcing number is Z(G) = {|F | : F ⊆ V (G) is a zero forcing set }.

When a black vertex vi is adjacent to exactly one white vertex vj, and the vertex vj
is then coloured black, we will say that vi forced vj.

Example 1.34. Consider the graph G of Figure 1. We wish to find a zero forcing
set F for G. Take vertices F = {v0, v1} ⊆ V (G) to initially be coloured black, and
the remaining vertices {v2, v3, v4, v5} to be coloured white. Vertex v4 is the only vertex
adjacent to vertex v0 which is white, thus vertex v4 is coloured black. Now that vertex v4
is black, the only white vertex adjacent to vertex v1 is vertex v2. So we can then colour
v2 black. Similarly, vertex v3 can be forced by vertex v4. Finally, the only remaining
white vertex is v5 which is adjacent to v3, so it can be forced, and coloured black. We end
with a derived colouring which is all black, therefore F = {v0, v1} is a zero forcing set. It
is not possible to force the graph G beginning with a single vertex coloured black, thus
Z(G) = 2.

We now give some simple bounds on Z(G) which will be very important in the majority
of the proofs later on.

Lemma 1.35. For any graph G, if δ(G) = min{deg(v)|v ∈ V (G)}, then δ(G) ≤
Z(G) ≤ |V (G)| − 1. If G is k-regular, then Z(G) ≥ k.

Proof. Consider a graph G. If |V (G)| = n, then by the colour-change theorem, there
must be at least one vertex in V (G) coloured white, and thus Z(G) ≤ V (G)−1. If δ(G) is
the minimum degree of a vertex vi ∈ V (G), for vi to force another vertex, at least δ(G)−1
of the vertices must also be in the zero forcing set. If vi is not in the zero forcing set, then
there is some initial vertex vj which has deg(vj) > δ(G) in the initial zero forcing set.
For vj to force any other vertex, it must be adjacent to at least δ(G) + 1 > δ(G) vertices.
Thus Z(G) ≥ δ(G).

If G is k-regular, then k = δ(G) ≤ Z(G). �

Theorem 1.35 will be used in many cases when proving the zero forcing number of a
graph, this is because the regularity of the graph provides a lower bound on the cardinality
of a zero forcing set F of G. Since the colour-change rule and zero forcing number relies
on the forcing set F of minimum size, we use Theorem 1.35 to reduce the proof of the
zero forcing number. We do this by showing the existence of a forcing set of size δ(G).

Although the zero forcing number of a graph G is an invariant, there can be many
possible zero forcing sets F of G such that |F | = Z(G). The following theorem utilizing
this idea is presented in [8].

Theorem 1.36. [8] For any graph G of order ≥ 1, no vertex is in every optimal zero
forcing set of G.
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Definition 1.37. The propagation time of the zero forcing of a graph G, denoted
P (G), is the minimum number of iterations of the colour-change rule to colour all of the
vertices v ∈ V (G) black over all of the zero forcing sets F such that |F | = Z(G).

Lemma 1.38. For any graph G, 1 ≤ P (G) ≤ V (G)− Z(G).

Proof. Since there must be at least one vertex forced per iteration, by the colour-
change rule the maximum propagation time for a given graph G is P (G) ≤ V (G)−Z(G).
Because there must be at least one vertex not initially in the zero forcing set then |V (G)| >
Z(G). Thus we have that there is at least one vertex which must be forced. So P (G) ≥ 1
for all graphs. �

Example 1.39. Consider the graph Cn = Cn(1). The zero forcing set can be taken to
be any two adjacent vertices. Consider the circulant graph Cn and label the vertices v0 to
vn−1. By Lemma 1.35, it is known that Z(Cn) ≥ 2. If the two vertices are adjacent, then
they will each be adjacent to one vertex not yet in the set. Once the adjacent vertices are
forced then the pattern continues until all n vertices are forced. Since there exists a zero
forcing set which can force every vertex, then Z(Cn) = 2 for all n ≥ 3.

After each iteration of the forcing there are two more vertices which are forced. With
the two initial vertices in the zero forcing set, after one iteration there are four vertices
now forced. If n = 4, then the process stops. If not, the iteration continues. We obtain a
value for P (G) from the total number of vertices n minus the initial forcing set, divided
by the number of vertices forced per iteration, in this case two. We thus obtain the result
that P (Cn) = dn−2

2
e.

Example 1.40. Consider the complete graph Kn = Cn(1, 2, 3, ..., bn
2
c). By Lemma

1.35, since Kn is (n − 1)-regular, it gives that n − 1 ≥ Z(Cn) ≥ n − 1. Therefore
Z(Cn(1, 2, 3, ..., bn

2
c)) = n− 1 for all n ≥ 1.

It has been shown that Z(Kn) = n− 1. There is only one vertex to force, which can
be forced by any of the vertices in the zero forcing set. By Lemma 1.38 there must be at
least one vertex forced per iteration. Thus P (Kn) = 1.

From Examples 1.39 and 1.40 we obtain the following lemmas which will be used to
simplify later results.

Lemma 1.41. If G = Cn, then Z(G) = 2 and P (G) = dn−2
2
e.

Lemma 1.42. If G = Kn, then Z(G) = n− 1 and P (G) = 1.

The next example will determine the zero forcing number and propagation time of a
less straight forward example.

Example 1.43. Consider the circulant graph G = C6(1, 3) where the vertices are
labeled from v0 to v5 (see Figure 7). From Lemma 1.27, G is 3-regular. Since G is 3-
regular, Lemma 1.35 implies Z(G) ≥ 3. It will be shown that Z(G) = 4, so it must be
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shown that it is not possible that a zero forcing set F exists such that |F | = 3, but it can
be shown that there exists F with |F | = 4.

Suppose there exists a F with |F | = 3. From the colour-change rule, at least one of
the three initial vertices must force one of the three remaining vertices. Without loss of
generality, let vertex v0 be the forcing vertex. Vertex v0 is adjacent to vertices {v1, v3, v5}.
Without loss of generality again take vertices {v1, v3} to also be in the initial forcing set,
so vertex v5 will be forced in the first iteration, and let it be forced. For any two of the
three vertices are chosen to be in F , the third adjacent vertex will always be forced in the
first iteration. This will always result in the same vertices being forced after one iteration.
Once vertex v5 is forced, there are four vertices in total which are forced. However, all four
of the vertices are adjacent to two vertices not in the forcing set. Thus vertices {v0, v1, v3}
is not a zero forcing set. If any other subset of two vertices adjacent to vertex v0 were
chosen to be in the original forcing set a similar result would occur with two vertices in
G unable to be forced. Because of the structure of the graph G, it is not possible to have
a zero forcing F set such that |F | = 3. So Z(G) > 3.

Since a forcing set of size three was not successful in colouring the entire graph, an
additional vertex is added to the initial set of forced vertices. Maintaining the original
three vertices, add vertex v2 so the initial set is F ′ = {v0, v1, v2, v3}. We claim that
F ′ = {v0, v1, v2, v3} is a zero forcing set. From these four vertices, vertex v5 can be forced
from vertex v0 as before. Also in the first iteration, vertex v1 can force vertex v4 since its
other two adjacent vertices {v0, v2} are already forced. After this step is completed all
six vertices are forced, Thus F ′ is a zero forcing set. Therefore, Z(G) = 4 and P (G) = 1.
The graph G turns out to be isomorphic to the complete bipartite K3,3 which will be
discussed in more detail later on (see Theorem 2.9).

Figure 7. The circulant graph C6(1, 3) ' K3,3

After working through Example 1.43, it is more clear as to why the zero forcing
number of a circulant graph G is not always straight forward and equal to the degree of
each vertex. Now that the required background has been covered, we formally introduce
the main question of this project.

Question 1.44. If S ⊆ {1, 2, . . . , bn
2
c}, and if G = Cn(S) is a circulant graph, then

what is the zero forcing number of G?

In the next chapter we will answer this question for some families of circulant graphs.
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4. Literature Review

In this section, we discuss the origin of the zero forcing number, and review some of its
known properties. The original idea of the zero forcing number was formally introduced in
[1] to bound the minimum rank for a set of matrices to an associated graph, by bounding
the maximum nullity. The minimum rank problem of a graph G is to determine the
minimum rank over all of the n× n real symmetric of matrices with graph G.

4.1. Motivation: Minimum Rank and Zero Forcing. The set of n × n real
symmetric matrices over R will be denoted by Sn(R). For a matrix A = [aij] ∈ Sn(R) there
exists a graph of A, denoted G(A), with vertices {v0, v1, . . . , vn−1} and edges {{vi, vj} :
ai+1,j+1 6= 0, 0 ≤ i < j ≤ n − 1}. We note that there are no restrictions on the diagonal
elements of A.

Definition 1.45. The set of n× n symmetric matrices of a graph G (over R) is

S(G) = {A ∈ Sn(R) : G(A) = G}.

Example 1.46. In Figure 1.46 we see the graph G = C6(1, 2) and two 6×6 symmetric
matrices A1 and A2 in S(G). We see that the matrices A1 and A2 have a non-zero entry
aij if and only if {vi−1, vj−1} ∈ E(G). Otherwise, if no such edge exists, then the entry
aij of A1 and A2 is zero.

A1 =



0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0



A2 =



3 2 1 0 3 1
2 0 2 1 0 6
1 2 4 1 1 0
0 1 1 5 3 2
3 0 1 3 4 2
1 6 0 2 2 0


v0 v1

v2

v3v4

v5

Figure 8. The circulant graph G = C6(1, 2) and two elements of S(G).
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Now that the relation between a set of matrices and its associated graph has been
presented, we focus on why we would want such a relationship to exist.

Definition 1.47. The minimum rank of a graph G (over R) is

mr(G) = min{rank(A) : A ∈ S(G)}.

Example 1.48. Following from Example 1.46, we see matrix A2 has six linearly in-
dependent rows. In contrast, we see that the first three rows of A1 are linearly indepen-
dent. Rows four, five, and six are copies of rows one, two and three, respectively. Thus
rank(A2) = 6, rank(A1) = 3, and mr(G) ≤ 3.

Definition 1.49. For A ∈ Rn×n, the maximum nullity of a graph G (over R) is

M(G) = max{nullity(A) : A ∈ S(G)}.

The Rank Nullity Theorem states that for any n×n matrix A, rank(A)+nullity(A) =
n. Hence we have the following lemma which will be very useful.

Lemma 1.50. [1] For any graph G, mr(G) +M(G) = |V (G)|.

The minimum rank of G can often be difficult to compute directly. Instead, using
Lemma 1.50, the maximum nullity is often used to find the solution for the minimum
rank problem. The next few theorems demonstrate a relation between Z(G) and M(G)
for a graph G. Theorem 1.51 illustrates that if nullity(A) ≥ 2, then there is a vector in
Null(A) with a zero in any specified position.

Theorem 1.51. Suppose there exists two linearly independent vectors ~x and ~y ∈
Null(A). Then for any i, 0 ≤ i ≤ n−1, there exists a nonzero vector ~z = (z0, z1, . . . , zn−1) ∈
Null(A), such that zi = 0.

Proof. Without loss of generality, let i = 0. Let ~x = (x0, x1, . . . , xn−1) and ~y =
(y0, y1, . . . , yn−1) be linearly independent null vectors of A. If x0 = 0 or y0 = 0, then let
~z = ~x or ~z = ~y respectively. Otherwise, let ~z = y0~x− x0~y. Then z0 = 0 but ~z 6= 0 since ~x
and ~y are linearly independent and x0 and y0 are nonzero. �

The next theorem generalizes Theorem 1.51.

Theorem 1.52. [1] If nullity(A) > k, then for any k specified positions there exists
a non-zero vector in Null(A) with zeros in those positions.

Proof. Suppose A is an n×n matrix with nullity(A) > k. Without loss of generality,
it is enough to show that there exists a non-zero vector ~x ∈ Null(A) such that xi = 0 for
1 ≤ i ≤ k. Let ~z1, ~z2, . . . , ~zk+1 be linearly independent vectors in Null(A). Consider the
system of equations determined by the vector equation

c1~z1 + c2~z2 + . . .+ ck+1~zk+1 = ~0
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restricted to the first k equations. Since there are more variables than equations, there is a
non-trivial solution to these k equations with c1, c2, . . . , ck+1 not all zero. Since ~z1, . . . , ~zk+1

are independent, then ~x = c1~z1+c2~z2+ . . .+ck+1~zk+1 ∈ Rn is a non-zero vector in Null(A)
with xi = 0, 1 ≤ i ≤ k. �

The proof of the next lemma illustrates why we use the term zero-forcing.

Lemma 1.53. [1] Let F be a zero forcing set of G and A ∈ S(G). If ~x ∈ Null(A) and

xi = 0 for all xi ∈ F , then ~x = ~0.

Proof. We follow the proof of [1]. Let A = [aij] be an n× n matrix with A ∈ S(G).
Without loss of generality, assume that the first k vertices of G = G(A) correspond to a
zero forcing set of G. We assume that

~x =



0
0
...
0

xk+1
...

xn−1


∈ Null(A).

If k = n− 1, then ~x = ~0. Suppose k < n− 1. Then by the colour-change rule there exists
some vertex vu ∈ F , 0 ≤ u ≤ k, which can force another vertex vw /∈ F . In particular,
k ≤ w ≤ n− 1. We claim that xw = 0. To prove the claim, we consider A~x.

For convenience, if va, vb ∈ V (G), we write va ∼ vb if va is adjacent to vb, and va � vb
if va 6= vb and va is not adjacent to vb. Then if A ∈ G(G) and ~x ∈ R

(4.1) (A~x)u = auuxu +
∑

vu∼vm

aumxm +
∑

vu�vm

aumxm = auuxu +
∑

vu∼vm

aumxm.

The sum
∑

vu�vm
aumxm = 0 since auw = 0 if {vu, vm} /∈ E(G). Since ~x ∈ Null(A), by

Equation 4.1 we have

auuxu +
∑

vu∼vm
aumxm = 0.

However xu = 0 since u ∈ F , so auuxu = 0. Since vw is a vertex forced by vu, vw is
the only vertex adjacent to vu which is not black by the colour-change rule. Hence,

auuxu +
∑

vu∼vm
aumxm = 0 + auwxw = 0. Thus auwxw = 0.

However auw 6= 0 because {vu, vw} ∈ E(G), thus xw = 0. In a similar way every other

colour change corresponds to requiring another entry in ~x to be zero. Thus ~x = ~0. �
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The next theorem links the zero forcing number with the maximum nullity.

Theorem 1.54. [1] Let G be a graph and let F ⊆ V (G) be a zero forcing set of G.
Then M(G) ≤ |F |, and thus M(G) ≤ Z(G).

Proof. Suppose M(G) > |F |. So let A ∈ G(G) with nullity(A) > |F |. By Lemma
1.52, there exists a non-zero vector ~x ∈ Null(A) that vanishes on all vertices in F . But
by Theorem 1.53, any vector that is zero on the vertices of F is zero everywhere. So our
nonzero vector ~x is also the zero vector. This is a contradiction. Thus M(G) ≤ Z(G). �

Because of Lemma 1.50, the relationship M(G) = n − mr(G) ≤ Z(G) implies n −
Z(G) ≤ mr(G). In other words the zero forcing number places a lower bound to the
minimum rank of a graph G. This fact gives motivation to study Z(G). The relationship
between a set of matrices and their associated graph then takes a problem in linear algebra
and gives it a pictorial representation as a graph.

4.2. Zero Forcing Number of General Graphs. The authors of [1] determined
various properties of the zero forcing number for a few families of graphs. Some of these
are useful for the study of the zero forcing number for circulant graphs. We state these
results below.

Lemma 1.55. If G = G1 ∪ . . .∪Gt is a disconnected graph with connected components
G1, . . . , Gt, then Z(G) = Z(G1) + . . .+ Z(Gt) and P (G) = max{P (Gi), . . . , P (Gt)}.

Theorem 1.56. [1] For any graphs G,H, Z(G�H) ≤ min{Z(G)|H|, |G|Z(H)}.

Corollary 1.57. [1] If s ≥ t, then Z(Ks�Kt) ≤ st− s− t+ 2.

Theorem 1.58. [1] For each of the following families of graphs, Z(G) = M(G):

(1) Any graph G such that |G| ≤ 6.
(2) Kn, Cn, Pn.
(3) Any tree T.
(4) All the graphs listed in Table 1 in [1].

A few examples listed in Table 1 in [1] are:

• the hyercube, Qn

• A graph G with a Hamiltonian path
• the supertriangle, Tn
• the Petersen graph
• the Mobius Ladder

Although the results are not all applicable to the family of circulant graphs, Theorem
1.58 (1) and (2) will be useful.

For a graph G and a subgraph H ⊆ G it is not necessarily the case that Z(G) ≥ Z(H).
For example, if G = C12(1, 3, 5, 6) and H = C12(1, 3, 5), then Z(G) = 9 and Z(H) = 10,
as shown in Table 2. Thus Z(G) = 9 < 10 = Z(H).
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4.3. Zero Forcing Number of Circulant Graphs. Since the introduction of the
zero forcing number in [1], a number of authors have been interested in developing the
properties of this invariant. Some of the references include [2], [13], [12], and [3]. We
will now present some of their findings.

Theorem 1.59. [2] If G is a disconnected circulant graph, then there is a set of
isomorphic subgraphs G1, . . . , Gr such that V (G) = V (G1)∪. . .∪V (Gr) and for i = 1, . . . , r
then Z(G) = rZ(Gi), and P (G) = P (Gi).

Proof. Consider a disconnected circulant graphG on n vertices and set S = {s1, s2, . . . , st}
such that s1 < s2 < . . . < st, with connected components {G1, . . . , Gr}. If G is discon-
nected, then by Theorem 1.28, gcd(n, s1, s2, . . . , st) 6= 1. The value of the greatest common
denominator of the number of vertices and elements of S is equal to the number of con-
nected components. This follows from how circulant graphs are constructed by the set
S. If gcd(n, s1, s2, . . . , st) = r, then r is the minimal generator, so r = s1. For a vertex
vi ∈ V (G), the minimal generator s1 creates an edge {vi, vi+s1} ∈ E(G) and since s1 is
a divisor of n then n

s1
is the length of the cycle generated by s1 containing the vertices

{vi, vi+s1 , vi+2s1 , . . . , vi+ n
s1
−1s1}. Similarly for vertices {vi+1, . . . , vi+s1−1} completely dis-

joint cycles of length n
s1

are generated. If gcd(n, s1, s2, . . . , st) = r, then all generators sj
for j > 1 will be a multiple of s1, so the edges constructed by these generators will be
contained within a single cycle generated by s1.

By Theorem 1.28, if gcd(n, s1, s2, . . . , st) = 1, then the graph is connected. If there
are r connected components, then each will have |Gi| = n

r
and will have the set S ′ =

{ s1
r
, s2

r
, . . . , st

r
}. The components of G are thus on an equal number of vertices with a

similar set of edge generators, thus the components Gi for i = 1, . . . , r are isomorphic.

Example 1.60. Consider the graph G = C16(4, 8), since gcd(16, 4, 8) = 4, then for
a vertex vi ∈ V (G) for i = 0, 1, 2, 3, {{vi, vi+4}, {vi+4, vi+8}, {vi+8, vi+12}, {vi+12, vi}} ∈
E(G). Further, {vi, vi+8} ∈ E(G). Similarly, {vi+4, vi+12} ∈ E(G). The resulting edge set
is a collection of four disjoint cubic graphs on four vertices. Thus C16(4, 8) = 4C4(1, 2).

The value of Z(G) is obtained by treating the components G1, . . . , Gr individually
when performing the zero forcing. The zero forcing process cannot force between dis-
connected subgraphs since there are no edges {vi, vj} ∈ E(G) such that vi ∈ V (Gp) and
vj ∈ V (Gq) for 1 ≤ p < q ≤ r by definition of component. Since each Gi ⊂ G are
isomorphic, then the zero forcing number of Gi is obtained from the colour-change rule
and multiplied by the number of isomorphic copies of Gi. Thus Z(G) = rZ(Gi). Since
the zero forcing number is taken from a single subgraph, the propagation time of G is the
same as the propagation time for a subgraph. Thus P (G) = P (Gi). �

Example 1.61. If G = C6(2), then G is isomorphic to two disconnected C3(1). See
Figure 9. By Theorem 1.59 and Lemma 1.38, Z(G) = 4 and P (G) = 1.
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Figure 9. The circulant graph C6(2) ' 2C3(1)

Example 1.62. If G = C12(2, 6), then G is disconnected since gcd(12, 2, 6) = 2. The
graph G is isomorphic to two disconnected C6(1, 3) graphs. See Figure 10. By Theorem
1.59 and Example 1.43, Z(G) = 8 and P (G) = 1.

Figure 10. The circulant graph C12(2, 6) ' 2C6(1, 3)

An invariant of a graph which has not yet been discussed is the girth of a graph G.

Definition 1.63. The girth of a graph G is the length of the shortest cycle in G.

In the paper [3], written by R. Davila and F. Kenter, they discuss and determine
bounds for the zero forcing number of graphs with a large girth. Some of these results
are presented below.

Theorem 1.64. [3] Let G be a graph with girth g, then Z(G) ≤ n− g + 2.

Theorem 1.65. [3] Let G be a graph with girth g ≥ 5, and minimum degree δ ≥ 2,
then 2δ − 2 ≤ Z(G).



CHAPTER 2

Families of Circulant Graphs

In this chapter we determine the zero forcing number and propagation times for various
families of circulant graphs. In the tables at the end of the project, the zero forcing
numbers are shown for all circulant graphs, up to isomorphism, for |G| ≤ 16. In this
chapter, we determine Z(G) for six families of circulant graphs. Examples of the families
can be found in the tables.

1. The Circulant Graph Cn(1, . . . , d) with 1 ≤ d ≤ bn
2
c

The graphs in Figures 1,2,3, and 4 show the circulant graph C8(1, . . . , d) for d =
1, 2, 3, 4.

Figure 1. The circulant graph C8(1) ' C8

Figure 2. The circulant graph C8(1, 2)

Figure 3. The circulant graph C8(1, 2, 3)

For the family Cn(1, . . . , d), we have the following result.

16



1. THE CIRCULANT GRAPH Cn(1, . . . , d) WITH 1 ≤ d ≤ bn
2
c 17

Figure 4. The circulant graph C8(1, 2, 3, 4) ' K8

Theorem 2.1. Let G = Cn(1, 2, . . . , d).

(1) If d < bn
2
c, then Z(G) = 2d and P (G) ≤ dn−2d

2
e.

(2) If d = bn
2
c, then Z(G) = n− 1 and P (G) = 1.

Proof. Let G = Cn(1, 2, . . . , d) for some d < bn
2
c.

If d = 1, then G = Cn(1) ' Cn. By Lemma 1.41, Z(Cn) = 2 and P (Cn) ≤ dn−2
2
e.

Suppose 2 ≤ d ≤ bn
2
c − 1. In this case, each vertex will have degree 2d. By

Lemma 1.35, Z(G) ≥ 2d. To show that Z(G) = 2d, we must find a zero forcing set
of size 2d. We pick a vertex vA and choose 2d − 1 of its adjacent vertices. The set
of 2d vertices adjacent to vertex v0 are {vn−d, vn−(d−1), . . . , vn−1, v1, . . . , vd−1, vd}. Let
F = {vn−(d−1), . . . , vn−1, v0, v1, . . . , vd−1, vd} and starting with all vertices in F black. We
claim that F is a zero forcing set of G. Vertex vn−d is the only vertex in the neighbour
set of v0 that is not in F . So vn−d will be turned black in the first iteration of the colour-
change rule. The vertex v1 will also be adjacent to 2d − 1 vertices in F . Thus it will be
able to force a vertex not yet in the set, specifically vertex vd+1. This pattern continues
in each iteration of the colour-change rule; in a given iteration t, 1 ≤ t ≤ P (G), vertices
vn−(t−1) and vt will force vertices vn−(t+d−1) and vt+d, respectively. The iteration of the
colour-change rule continues until all vertices are coloured black. Thus F is a zero forc-
ing set of order 2d and therefore Z(G) = 2d. Since there are n − 2d remaining vertices
and each iteration forces an additional two vertices, except possible the last one, then
P (Cn(1, . . . , d)) ≤ dn−2d

2
e.

If d = bn
2
c, then G = Cn(1, 2, . . . , d) would be isomorphic to the complete graph Kn

as noted in Example 1.40. By Lemma 1.42, Z(Kn) = n− 1 and P (G) = 1. �

Corollary 2.2. Suppose G = Cn(s, 2s, 3s, . . . , ts) for 1 < ts < n
2
. If gcd(n, s) 6= 1,

then Z(G) = 2st and P (G) ≤ d
n
s
−2t
2
e.

Proof. By Theorem 1.28, since gcd(n, s, . . . , ts) 6= 1, the graph G is disconnected.
Further, by Theorem 1.59, there exist isomorphic subgraphs G1, . . . , Gs such that V (G) =
V (G1) ∪ . . . ∪ V (Gs) and Z(G) = sZ(Gi), with Gi = Cn

s
(1, 2, 3, . . . , t). By Theorem 2.1

Z(Gi) = 2t and P (Gi) ≤ d
n
s
−2t
2
e for t < b n

2s
c. Thus Z(G) = 2st and P (G) ≤ d

n
s
−2t
2
e. �

Corollary 2.3. If G = Cn(s, 2s, 3s, . . . , ts) and t = b n
2s
c, then Z(G) = s(n

s
− 1) and

P (G) = 1.
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Proof. If t = b n
2s
c, then by Lemma 1.28, G is isomorphic to s disjoint Kn

s
graphs.

Then by Lemma 1.42, Z(Kn
s
) = n

s
− 1 and P (G) = 1. Thus Z(G) = s(n

s
− 1) and

P (G) = 1. �

Figure 5. The circulant graph C12(2) ' 2C6

Figure 6. The circulant graph C12(2, 4) ' 2C6(1, 2)

Figure 7. The circulant graph C12(2, 4, 6) ' 2C6(1, 2, 3)

Corollary 2.4. If gcd(s, n) = 1 and G = Cn(s, 2s, . . . , ts), then G ' Cn(1, 2, 3, . . . , t),
and hence Z(G) = 2t and P (G) ≤ dn−2t

2
e.

Proof. We claim that the graphs Cn(s, 2s, . . . , ts) and Cn(1, 2, 3, . . . , d) are isomor-
phic graphs From Lemma 1.31, the graph isomorphism f(x) : Zn → Zn, defined by
f(x) = sx, where gcd(n, s) = 1, maps Cn(1, 2, 3, . . . , d) to Cn(s, 2s, . . . , ts). Thus from
Theorem 2.1, Z(G) = 2t and P (G) ≤ dn−2t

2
e. �

Corollary 2.5. If G = C2n(t) and gcd(2n, t) = 1, then G ' C2n, and Z(G) = 2 and
P (G) ≤ d2n−2

2
e.

Proof. If gcd(2n, t) = 1, the graph G is connected by Theorem 1.28. Since G is
2-regular and connected, G is a cycle. Thus G ' C2n. Then by Lemma 1.41, Z(G) = 2
and P (G) ≤ d2n−2

2
e. �
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Figure 8. The circulant graph C13(1, 2, 3)

Figure 9. The circulant graph C13(2, 4, 6)

If gcd(2n, t) 6= 1, then G is disconnected. If this is the case, then by Theorem 1.28,
G ' sC 2n

t
(1). From here we apply Lemmas 1.41 and 1.59, resulting with Z(G) = 2s and

P (G) ≤ d
2n
t
−2
2
e.

Example 2.6. Pictured in Figure 10 is the circulant bipartite graph C10(3). Since
gcd(10, 3) = 1, G is connected and it is equal to the graph C10.

Figure 10. The circulant graph C10(3) ' C10

2. The Circulant Graph C2n(1, 3, 5, . . .)

By Theorem 1.32, the family of circulant graphs with an even number of vertices and
all consecutive odd elements of S is equivalent to the family of complete bipartite graphs.
See Figure 11 for an example of the complete bipartite circulant graph K4,4, and Figure
12 for an image of the complete bipartite graph K7,7.

Lemma 2.7. If G = Ka,b for 1 < a ≤ b, then Z(G) = a+ b− 2 and P (G) = 1.

Proof. If G = Ka,b, consider a labeling of the vertices {v0, . . . , va, va+1, . . . , va+b−1}
such that vi is adjacent to vj if 0 ≤ i ≤ a − 1 and a ≤ j ≤ a + b − 1. Since G is
a complete bipartite graph each vertex of {v0, . . . , va−1} is adjacent to every vertex of
{va, . . . , va+b−1}, and vice versa. Thus deg vi = b for 0 ≤ i ≤ a − 1 and deg vj = a for
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Figure 11. The circulant graph C8(1, 3) ' K4,4

Figure 12. The circulant graph C14(1, 3, 5, 7) ' K7,7

a ≤ j ≤ a+ b− 1. By the colour-change rule, for a vertex vi to force a vertex vj, all other
vertices adjacent to vi must be black. If there are more than two white vertices in either
partition, then no vertex adjacent to them could force the two white vertices. Thus there
can only be one white vertex in each partition of the vertices. So Z(G) = a + b − 2 and
P (G) = 1. �

Corollary 2.8. If G = Ka,b for 1 = a ≤ b, then Z(G) = a+ b− 2 and P (G) = 2.

Proof. If G = Ka,b such that a = 1, then we obtain a graph G = K1,b, also known as
a star graph. Let v0 be the vertex of degree b, and label the remaining vertices v1, . . . , vb.
The same zero forcing set and reasoning is taken as in Lemma 2.7, thus Z(G) = a+ b−2.
Let vertex vj be the vertex which is not in the initial zero forcing set for 1 ≤ j ≤ b. The
propagation time differs in this case since the vertex v0 must be forced before the final
unforced vertex vj can be forced. Thus P (G) = 2. �

Theorem 2.9. If G = C2n(1, 3, 5, . . . , t) with, t = n if n is odd, and t = n− 1 if n is
even. Then G ' Kn,n and Z(G) = 2n− 2 and P (G) = 1.

Proof. In order to prove the lemma, it must be shown first thatG = C2n(1, 3, 5, . . . , t)
is isomorphic to Kn,n. By Theorem 1.32, G is bipartite. In fact, the two parts correspond
to vertices with even subscripts and those with odd subscripts.

If t = n − 1, |S| = n
2
, then G is regular of degree 2n

2
= n. If t = n, |S| = n+1

2
. By

Lemma 1.27, G is regular of degree (2n+1
2
−1) = n. Thus G is n regular, and so G = Kn,n.

By Lemma 2.7, Z(G) = 2n− 2 and P (G) = 1. �
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3. Cubic Circulant Graphs

We will now look at the family of cubic circulant graphs and determine the zero
forcing number for this entire family. If G is a cubic circulant graph, then by Lemma
1.27, G = C2n(a, n) for some a, 1 ≤ a < n. Using the following theorem we are able to
break the family of cubic circulants into two cases. From here, since all cubic circulants
are isomorphic to one of the two cases, it will be much easier to determine the zero forcing
number for this family of graphs.

Theorem 2.10. [4] Let G = C2n(a, n) with 1 ≤ a < n, and let t = gcd(a, 2n).

(1) If 2n
t

is even, then G ' tC 2n
t

(1, n
t
).

(2) If 2n
t

is odd, then G ' t
2
C 4n

t
(2, 2n

t
).

Theorem 2.10 demonstrates that we can partition the family of cubic circulant graphs
into two classes, either 2n

t
is even or odd. From Lemma 1.59, we then know that if we can

calculate the zero forcing number of the connected components isomorphic to C 2n
t

(1, n
t
) or

C 4n
t

(2, 2n
t

), then we can determine the zero forcing number of any cubic circulant graph.

We characterize and determine the zero forcing number for these classes in Theorems 2.11,
and 2.12 respectively.

Theorem 2.11. [2] If G = C2n(1, n) and for n ≥ 3, then Z(G) = 4 and P (G) ≤ dn−2
2
e.

Proof. By Lemma 1.35, since G is 3-regular, then Z(G) ≥ 3. To prove that Z(G) 6=
3, we must prove that no zero forcing set F exists such that |F | = 3, but one does exist
such that |F | = 4.

Suppose F is a zero forcing set of G and |F | = 3. This means that some vertex
vi ∈ V (G) in F will force one of its neighbours in the first iteration of the colour-change
rule. Hence F must consist of vi and all but one of its neighbours. But then the derived
colouring will be vi and its three neighbours since each of the neighbours of vi will be
adjacent to two vertices that are not black. Thus F is not a zero forcing set and so
|Z(G)| ≥ 4.

We now show that there exists a forcing set F such that |F | = 4. We claim that
F = {v0, v1, vn, vn+1} is a zero forcing set. Vertex v0 can force vertex v2n−1, and vertex
v1 can force vertex v2. Vertices vn and vn+1 can also force vertices vn−1 and vn+2 re-
spectively. Repeating, vertices {v1+t, v2n−t, vn+1+t, vn−t} will be forced in iteration t by
vertices {vt, v2n−(t−1), vn+t, vn−(t−1)} respectively until all of the vertices are forced. Thus
F is a zero forcing set, and P (C2n(1, n)) ≤ dn−2

2
e. �

If n = 2, then G = C2n(1, n) = C4(1, 2) is the complete graph K4, which has a zero
forcing number of three by Lemma 1.35.

Theorem 2.12. (1) If n is even, then C2n(2, n) = 2Cn(1, n
2
).

(2) If n is odd, then C2n(2, n) = Cn�P2.



4. FUTURE RESEARCH 22
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Figure 13. The Cartesian product of P2 and C7 results in the graph shown, P2�C7.

Proof. Case (1) of Theorem 2.12 follows from Theorem 2.11. It thus remains to
prove case (2).

Let G = C2n(2, n) with n odd. Note that C2n(2) is a subgraph equal to two disjoint
cycles of length n by Lemma 1.28. The vertices in the cycle containing vetex v0 are
{v0, v2, v4, . . . , v2n−4, v2n−2}. We observe that the cycle containing vertex v0 contains only
vertices with even subscripts. The other cycle will contain only vertices with odd valued
subscripts. For any vertex vi ∈ V (G), its adjacent vertices will be {vi+n, vi+2, vi−2}. Then
the two cycles are connected such that the ordering of the cycles are both maintained.
For example, in the cycle vertex vi is adjacent to vi+2, similarly vertex vi+n is adjacent to
vertex vi+n+2 which is diametrically opposite to vertex vi+2. Thus C2n(2, n) = Cn�P2. �

Lemma 2.12, gives the result that G = C2n(2, n) = Cn�P2 for n odd. By Theorem
1.56, Z(Cn�P2) ≤ min{2Z(Cn), nZ(P2)} = min{4, n} = 4 for n ≥ 5. Thus for odd
n ≥ 5, Z(C2n(2, n)) = 4 and if n = 3, then Z(G) = 3. See Figure 3 for an example
of P2�C7.This completes the computing the zero forcing number for the family of cubic
circulant graphs for both classes of cubic whether 2n

t
is even or odd. We summarize the

final results in the following theorem combining Theorem 2.12 with Theorems 1.28 and
1.59.

Theorem 2.13. Let G = C2n(a, n) with 1 ≤ a < n, and let t = gcd(a, 2n).

(1) If 2n
t

is even, then Z(G) = 4t for n
t
≥ 3

(2) If 2n
t

is odd, then Z(G) = 3t
2

for n = 3t
2

and Z(G) = 2t for n ≥ 5

4. Future Research

As it was shown in the previous section, the zero forcing number for the cubic graphs
can be determined for any graph in the family. The next family of graphs which were
studied is the family of graphs on an vertices with the set S = {1, n, 2n, . . . , bn} for b ≤ a

2
.

We make a conjecture about the zero forcing number of a graph G = C2n(1, n, 2n, . . . , bn).

Conjecture 2.14. If G = Can(1, n, 2n, . . . , bn) with b = ba
2
c, then Z(G) = 2a and

P (G) = dn−2
2
e for n ≥ 4.
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See Figures 14 and 15 for examples. And see Tables 3 - 7 for the calculations done
using SAGE.

Figure 14. The circulant graph C8(1, 4) where a = 2 and n = 4

Figure 15. The circulant graph C16(1, 4, 8) where a = 4 and n = 4

Another family of circulant graphs G = Cn(a, a + 1, . . . , b − 1, b) for 1 < a ≤ b ≤ n
2

was a point of focus. Certain families of circulants showed stabilizing patterns for a large
number of vertices. For n ≥ 4 we arrived at the following conjecture.

Conjecture 2.15. If G = Cn(a, a+ 1, . . . , b− 1, b) for 1 < a ≤ b ≤ n
2
, then Z(G) =

n− 4 for n ≥ 4.

Theorem 2.9 gives the zero forcing number for Kn,n and Theorem 2.5 gives the zero
forcing number for a particular subgraph of Kn,n which is 2-regular. Lemma 2.12 then
gives the zero forcing number for the cubic bipartite graphs when a and n are both odd.
It would be interesting to characterize the zero forcing number of all bipartite circulant
graphs. This is a class that was explored in [13]. Using SAGE, the zero forcing number
for the members of this family were calculated and are presented in Table 9. We arrived
at the following conjecture.

Conjecture 2.16. If G = C2n(1, 3, 5, . . . , t) for t odd, then Z(G) = 2k − 2 where
k = deg(vi) for vi ∈ V (G).

In Theorem 2.1 we explored the family G = Cn(1, 2, . . . , d) for d < n
2
. The set S for

these graphs have a complement S ′ = (d+ 1, . . . , bn
2
c) for d ≥ 1. The zero forcing number

of the family of circulant graphs G = Cn(S ′) was tested using SAGE, the results shown
in Table 8. We arrived at the following conjecture.

Conjecture 2.17. If G = Cn(d+ 1, . . . , bn
2
c), then Z(G) = n− (d+ 2) for d ≤ 5 and

|S| > 2.



Appendices

1. Zero Forcing Code

The following code was used to obtain the values of the zero forcing sets and the
propagation times for the different circulant graphs.

def zero_forcing_power_prop(G):

prop_number = G.order()

for S in Combinations(G.vertices()):

if len(S)>prop_number:

break

if len(S)<=prop_number:

blue=set([])

for s in S:

blue.add(s)

q = test_zero_forcing(G,blue)

if q >= 0:

prop_number = len(S)

print len(S), blue, q

def test_zero_forcing(G,initial):

blue = copy(initial)

big_blue = copy(initial)

if len(big_blue) == G.order():

return 0

prop_time = 0

while True:

propagated = False

for b in blue:

if len(set(G.neighbors(b)).difference(blue)) == 1:

big_blue.add(set(G.neighbors(b)).difference(blue).pop())

propagated = True

if not propagated:

return -1

if propagated:

prop_time+=1

24



1. ZERO FORCING CODE 25

if len(big_blue) == G.order():

return prop_time

blue=copy(big_blue)

The code was obtained from: https://sage2.math.iastate.edu/home/pub/13/ [15].
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2. Tables

Table 1. The circulant graphs on one to ten vertices.

G K-Regularity Z(G) P (G) '

C2(1) 1 1 1 P2

C3(1) 2 2 1 C3

C4(1) 2 2 1 C4

C4(2) 1 2 1 2P2

C4(1, 2) 3 3 1 K4

C5(1) 2 2 2 C5

C5(2) 2 2 2 C5

C5(1, 2) 4 4 1 K5

C6(1) 2 2 2 C6

C6(2) 2 4 1 2K3

C6(3) 1 3 1 3P2

C6(1, 2) 4 4 2

C6(1, 3) 3 4 1 K3,3

C6(2, 3) 3 3 1

C6(1, 2, 3) 5 5 1 K6

C7(1) 2 2 3 C7

C7(2) 2 2 3 C7

C7(3) 2 2 3 C7

C7(1, 2) 4 4 2

C7(1, 3) 4 4 2

C7(2, 3) 4 4 2

C7(1, 2, 3) 6 6 1 K7
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G K-Regularity Z(G) P (G) '

C8(1) 2 2 3 C7

C8(2) 2 4 1 2C4

C8(3) 2 2 3 C8

C8(4) 1 4 1 4P2

C8(1, 2) 4 4 2

C8(1, 3) 4 6 1 K4,4

C8(1, 4) 3 4 2

C8(2, 3) 4 4 3

C8(2, 4) 3 6 1 2K4

C8(3, 4) 3 4 1

C8(1, 2, 3) 6 6 1

C8(1, 2, 4) 5 5 2

C8(1, 3, 4) 5 6 1

C8(2, 3, 4) 5 5 2

C8(1, 2, 3, 4) 7 7 1 K8

C9(1) 2 2 4 C9

C9(2) 2 2 4 C9

C9(3) 2 6 1 3K3

C9(4) 2 2 4 C9

C9(1, 2) 4 4 3

C9(1, 3) 4 5 2

C9(1, 4) 4 4 3

C9(2, 3) 4 5 4

C9(2, 4) 4 4 3

C9(3, 4) 4 5 2

C9(1, 2, 3) 6 6 2

C9(1, 2, 4) 6 7 1

C9(1, 3, 4) 6 6 3

C9(2, 3, 4) 6 6 2

C9(1, 2, 3, 4) 8 8 1 K9
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G K-Regularity Z(G) P (G) '

C10(1) 2 2 4 C10

C10(2) 2 4 2 2C5

C10(3) 2 2 4 C10

C10(4) 2 4 2 2C5

C10(5) 1 5 1 5P2

C10(1, 2) 4 4 3

C10(1, 3) 4 6 1

C10(1, 4) 4 6 2

C10(1, 5) 3 4 3

C10(2, 3) 4 6 2

C10(2, 4) 4 8 1 2K5

C10(2, 5) 3 4 3

C10(3, 4) 4 4 3

C10(3, 5) 3 4 3

C10(4, 5) 3 4 2

C10(1, 2, 3) 6 6 2

C10(1, 2, 4) 6 6 3

C10(1, 2, 5) 5 6 2

C10(1, 3, 4) 6 6 3

C10(1, 3, 5) 5 8 1 K5,5

C10(1, 4, 5) 5 7 2

C10(2, 3, 4) 6 6 3

C10(2, 3, 5) 5 7 2

C10(2, 4, 5) 5 5 1

C10(3, 4, 5) 5 6 3

C10(1, 2, 3, 4) 8 8 1

C10(1, 2, 3, 5) 7 7 2

C10(1, 2, 4, 5) 7 7 2

C10(1, 3, 4, 5) 7 7 2

C10(2, 3, 4, 5) 7 7 2

C10(1, 2, 3, 4, 5) 9 9 1 K10
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Table 2. These tables were obtained from [14] and modified to test if the
zero forcing number correlated with a graph being well-covered. Notation
and other calculations for well-covered circulant graphs is explained in [14].

G K-Regularity Z(G) P (G) V/B/N -/1

C3(1) 2 2 1 V 1

C4(1) 2 2 1 B

C4(2) 1 2 1 V 1

C4(1, 2) 3 3 1 V 1

C5(1) 2 2 2 V 1

C5(1, 2) 4 4 1 V 1

C6(2) 2 4 1 V 1

C6(3) 1 3 1 V 1

C6(1, 2) 4 4 2 B

C6(1, 3) 3 4 1 B

C6(2, 3) 3 3 1 V 1

C6(1, 2, 3) 5 5 1 V 1

C7(1) 2 2 3 B

C7(1, 2, 3) 6 6 1 V 1

C8(2) 2 4 1 N

C8(4) 1 4 1 V 1

C8(1, 2) 4 4 2 V 1

C8(1, 3) 4 6 1 B

C8(1, 4) 3 4 2 B

C8(2, 4) 3 6 1 V 1

C8(1, 2, 3) 6 6 1 B

C8(1, 2, 4) 5 5 2 V 1

C8(1, 3, 4) 5 6 1 B 1

C8(1, 2, 3, 4) 7 7 1 V 1
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G K-Regularity Z(G) P (G) V/B/N -/1

C9(3) 2 6 1 V 1

C9(1, 3) 4 5 2 B

C9(1, 2, 3) 6 6 2 V 1

C9(1, 2, 4) 6 7 1 B

C9(1, 2, 3, 4) 8 8 1 V 1

C10(2) 2 4 2 V 1

C10(5) 1 5 1 V 1

C10(1, 4) 4 6 2 N

C10(2, 4) 4 8 1 V 1

C10(2, 5) 3 4 3 B

C10(1, 2, 3) 6 6 2 V 1

C10(1, 2, 4) 6 6 3 V 1

C10(1, 2, 5) 5 6 2 B

C10(1, 3, 5) 5 8 1 B

C10(1, 4, 5) 5 7 2 V 1

C10(2, 4, 5) 5 5 1 V 1

C10(1, 2, 3, 4) 8 8 1 B

C10(1, 2, 3, 5) 7 7 2 B 1

C10(1, 2, 4, 5) 7 7 2 V 1

C10(1, 2, 3, 4, 5) 9 9 1 V 1

C11(1, 2) 4 4 4 B

C11(1, 3) 4 6 2 B

C11(1, 2, 3) 6 6 3 V 1

C11(1, 2, 4) 6 7 2 B

C11(1, 2, 3, 4) 8 8 2 V 1
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G K-Regularity Z(G) P (G) V/B/N -/1

C11(1, 2, 3, 4, 5) 10 10 1 V 1

C12(3)∗ 2 6 2 N

C12(4)∗ 2 8 1 V 1

C12(6)∗ 1 6 1 V 1

C12(1, 4) 4 6 2 N

C12(2, 4)∗ 4 8 2 N

C12(2, 6)∗ 3 8 1 N

C12(3, 4) 4 6 3 B

C12(3, 6)∗ 3 9 1 V 1

C12(4, 6)∗ 3 6 1 V 1

C12(1, 2, 6) 5 7 2 B 1

C12(1, 3, 5) 6 10 1 B

C12(1, 3, 6) 5 7 2 V 1

C12(1, 4, 6) 5 7 3 B

C12(2, 3, 4) 6 8 2 N

C12(2, 3, 6) 5 7 2 B 1

C12(2, 4, 6)∗ 5 10 1 V 1

C12(3, 4, 6) 5 7 2 B 1

C12(1, 2, 3, 4) 8 8 2 V 1

C12(1, 2, 4, 5) 8 10 1 B

C12(1, 2, 4, 6) 7 7 3 V 1

C12(1, 3, 4, 5) 8 10 1 B 1

C12(1, 3, 4, 6) 7 8 2 B

C12(1, 3, 5, 6) 7 9 1 B 1

C12(1, 4, 5, 6) 7 8 2 V 1
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G K-Regularity Z(G) P (G) V/B/N -/1

C12(2, 3, 4, 6) 7 9 1 V 1

C12(1, 2, 3, 4, 5) 10 10 1 B

C12(1, 2, 3, 4, 6) 9 9 2 V 1

C12(1, 2, 3, 5, 6) 9 10 1 B

C12(1, 2, 4, 5, 6) 9 10 1 B 1

C12(1, 3, 4, 5, 6) 9 9 1 B 1

C12(1, 2, 3, 4, 5, 6) 11 11 1 V 1

C13(1, 3) 4 6 2 B

C13(1, 5) 4 6 4 V 1

C13(1, 2, 4) 6 8 2 B

C13(1, 2, 5) 6 8 3 B

C13(1, 3, 4) 6 8 3 B 1

C13(1, 2, 3, 4) 8 8 3 V 1

C13(1, 2, 3, 5) 8 9 2 V 1

C13(1, 2, 3, 6) 8 9 2 B

C13(1, 2, 3, 4, 5) 10 10 2 V 1

C13(1, 2, 3, 4, 5, 6) 12 12 1 V 1

C14(2)∗ 2 4 3 N

C14(7)∗ 1 7 1 V 1

C14(1, 6) 4 8 3 N

C14(2, 4)∗ 4 8 2 V 1

C14(1, 2, 5) 6 8 3 B

C14(1, 4, 6) 6 8 3 B

C14(1, 4, 7) 5 8 3 B

C14(1, 6, 7) 5 9 3 B 1
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G K-Regularity Z(G) P (G) V/B/N -/1

C14(2, 4, 6)∗ 6 12 1 V 1

C14(2, 4, 7) 5 7 2 B

C14(1, 2, 3, 4) 8 8 3 V 1

C14(1, 2, 3, 7) 7 9 2 B

C14(1, 2, 4, 6) 8 8 3 V 1

C14(1, 2, 4, 7) 7 9 3 B

C14(1, 2, 5, 6) 8 10 2 N

C14(1, 2, 5, 7) 7 9 3 B 1

C14(1, 3, 5, 7) 7 12 1 B

C14(1, 4, 6, 7) 7 9 3 B 1

C14(2, 4, 6, 7) 7 7 2 V 1

C14(1, 2, 3, 4, 5) 10 10 2 V 1

C14(1, 2, 3, 4, 6) 10 10 2 V 1

C14(1, 2, 3, 4, 7) 9 10 2 V 1

C14(1, 2, 3, 5, 7) 9 9 3 B

C14(1, 2, 3, 6, 7) 9 10 2 B

C14(1, 2, 4, 6, 7) 9 9 3 V 1

C14(1, 2, 5, 6, 7) 9 11 2 V 1

C14(1, 2, 3, 4, 5, 6) 12 12 1 B

C14(1, 2, 3, 4, 5, 7) 11 11 2 B 1

C14(1, 2, 3, 4, 6, 7) 11 11 2 V 1

C14(1, 2, 3, 4, 5, 6, 7) 13 13 1 V 1

C15(3)∗ 2 6 2 V 1

C15(5)∗ 2 10 1 V 1

C15(1, 5) 4 6 2 N
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G K-Regularity Z(G) P (G) V/B/N -/1

C15(3, 5) 4 6 2 N

C15(3, 6)∗ 4 12 1 V 1

C15(1, 2, 3) 6 6 5 B

C15(1, 3, 5) 6 9 3 B

C15(1, 3, 6) 6 9 2 V 1

C15(1, 4, 6) 6 11 2 N

C15(3, 5, 6) 6 9 2 V 1

C15(1, 2, 3, 6) 8 10 3 N

C15(1, 2, 3, 7) 8 10 3 B 1

C15(1, 2, 5, 6) 8 10 3 B

C15(1, 3, 4, 5) 8 10 3 B 1

C15(1, 3, 4, 6) 8 10 3 B 1

C15(1, 3, 5, 6) 8 10 3 B

C15(1, 4, 5, 6) 8 12 2 V 1

C15(1, 2, 3, 4, 5) 10 10 3 V 1

C15(1, 2, 3, 5, 6) 10 11 2 B

C15(1, 2, 3, 5, 7) 10 11 2 V 1

C15(1, 2, 4, 5, 7) 10 13 1 B

C15(1, 3, 4, 5, 6) 10 11 2 V 1

C15(1, 2, 3, 4, 5, 6) 12 12 2 V 1

C15(1, 2, 3, 4, 5, 7) 12 12 2 B 1

C15(1, 2, 3, 4, 6, 7) 12 13 1 B

C15(1, 2, 3, 4, 5, 6, 7) 14 14 1 V 1

C16(4)∗ 2 8 1 N

C16(8)∗ 1 8 1 V 1
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G K-Regularity Z(G) P (G) V/B/N -/1

C16(2, 4)∗ 4 8 2 V 1

C16(2, 6)∗ 4 12 1 N

C16(2, 8)∗ 3 8 2 N

C16(4, 8)∗ 3 12 1 V 1

C16(1, 2, 4) 6 8 2 B

C16(1, 2, 6) 6 9 3 B 1

C16(1, 4, 6) 6 8 4 V 1

C16(1, 4, 7) 6 10 3 N

C16(1, 4, 8) 5 8 2 S 1

C16(1, 6, 8) 5 8 2 B

C16(2, 4, 6)∗ 6 12 1 N

C16(2, 4, 8)∗ 5 10 2 V 1

C16(2, 6, 8)∗ 5 12 1 N 1

C16(1, 2, 3, 8) 7 10 2 B 1

C16(1, 2, 4, 7) 8 10 3 B

C16(1, 2, 5, 8) 7 10 3 B

C16(1, 2, 6, 7) 8 12 1 N

C16(1, 2, 6, 8) 7 9 4 N

C16(1, 2, 7, 8) 7 8 3 B

C16(1, 3, 5, 7) 8 14 1 B

C16(1, 4, 6, 8) 7 9 4 B

C16(1, 4, 7, 8) 7 12 1 B 1

C16(2, 4, 6, 8)∗ 7 14 1 V 1

C16(1, 2, 3, 4, 5) 10 10 3 V 1

C16(1, 2, 3, 4, 6) 10 11 3 V 1



2. TABLES 36

G K-Regularity Z(G) P (G) V/B/N -/1

C16(1, 2, 3, 6, 8) 9 11 3 B 1

C16(1, 2, 3, 7, 8) 9 11 3 B

C16(1, 2, 4, 5, 8) 9 11 3 B

C16(1, 2, 4, 6, 7) 10 12 2 N

C16(1, 2, 4, 6, 8) 9 9 4 V 1

C16(1, 2, 4, 7, 8) 9 11 4 B 1

C16(1, 2, 6, 7, 8) 9 12 2 V 1

C16(1, 3, 4, 5, 7) 10 12 1 N

C16(1, 3, 5, 7, 8) 9 12 1 B 1

C16(1, 2, 3, 4, 5, 6) 12 12 2 V 1

C16(1, 2, 3, 4, 5, 7) 12 12 2 B 1

C16(1, 2, 3, 4, 5, 8) 11 12 2 V 1

C16(1, 2, 3, 4, 6, 8) 11 11 3 V 1

C16(1, 2, 3, 4, 7, 8) 11 12 2 B

C16(1, 2, 3, 5, 6, 7) 12 14 1 B

C16(1, 2, 3, 5, 6, 8) 11 12 2 V 1

C16(1, 2, 3, 5, 7, 8) 11 12 2 B

C16(1, 2, 4, 6, 7, 8) 11 13 2 V 1

C16(1, 3, 4, 5, 7, 8) 11 14 1 B 1

C16(1, 2, 3, 4, 5, 6, 7) 14 14 1 B

C16(1, 2, 3, 4, 5, 6, 8) 13 13 2 V 1

C16(1, 2, 3, 4, 5, 7, 8) 13 13 2 B 1

C16(1, 2, 3, 5, 6, 7, 8) 13 14 1 B 1

C16(1, 2, 3, 4, 5, 6, 7, 8) 15 15 1 V 1

Table 3. The Family C2n(1, n) for n = 1, . . . , 10, and 20.

G K-Regularity Z(G) P (G)

C2(1) 1 1 1

C4(1, 2) 3 3 1

C6(1, 3) 3 4 1

C8(1, 4) 3 4 2

C10(1, 5) 3 4 3

C12(1, 6) 3 4 3

C14(1, 7) 3 4 3

C16(1, 8) 3 4 3

C18(1, 9) 3 4 4

C20(1, 10) 3 4 4

C40(1, 20) 3 4 9
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Table 4. The Family C3n(1, n) for n = 1, . . . , 10, and 20.

G K-Regularity Z(G) P (G)

C3(1) 2 2 1

C6(1, 2) 4 4 1

C9(1, 3) 4 5 2

C12(1, 4) 4 6 1

C15(1, 5) 4 6 2

C18(1, 6) 4 6 2

C21(1, 7) 4 6 3

C24(1, 8) 4 6 3

C27(1, 9) 4 6 4

C30(1, 10) 4 6 4

C60(1, 20) 4 6 8

Table 5. The Family C4n(1, n, 2n) for n = 1, . . . , 10, and 20.

G K-Regularity Z(G) P (G)

C4(1, 2) 3 3 1

C8(1, 2, 4) 5 5 2

C12(1, 3, 6) 5 7 2

C16(1, 4, 8) 5 8 1

C20(1, 5, 10) 5 8 2

C24(1, 6, 12) 5 8 2

C28(1, 7, 14) 5 8 3

C32(1, 8, 16) 5 8 3

C36(1, 9, 18) 5 8 4

C40(1, 10, 20) 5 8 4

C80(1, 20, 40) 5 8 8

Table 6. The Family C5n(1, n, 2n) for n = 1, . . . , 10, and 20.

G K-Regularity Z(G) P (G)

C5(1, 2) 4 4 1

C10(1, 2, 4) 6 6 2

C15(1, 3, 6) 6 9 2

C20(1, 4, 8) 6 10 1

C25(1, 5, 10) 6 10 2

C30(1, 6, 12) 6 10 2

C35(1, 7, 14) 6 10 3

C40(1, 8, 16) 6 10 3

C45(1, 9, 18) 6 10 4

C50(1, 10, 20) 6 10 4

C100(1, 20, 40) 6 10 8
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Table 7. The Family C6n(1, n, 2n, 3n) for n = 1, . . . , 10, and 20.

G K-Regularity Z(G) P (G)

C6(1, 2, 3) 5 5 1

C12(1, 2, 4, 6) 7 7 3

C18(1, 3, 6, 9) 7 11 2

C24(1, 4, 8, 12) 7 12 1

C30(1, 5, 10, 15) 6 12 2

C36(1, 6, 12, 18) 6 12 2

C42(1, 7, 14, 21) 6 12 3

C48(1, 8, 16, 24) 6 12 3

C54(1, 9, 18, 27) 6 12 4

C60(1, 10, 20, 30) 6 12 4

C120(1, 20, 40, 60) 6 12 8
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Table 8. The Family of circulant graphs of the form Cn(d, ..., n/2) for d > 1.

G K-Regularity Z(G) P (G)

C6(2, 3) 3 3 1

C7(2, 3) 4 4 2

C8(3, 4) 3 4 2

C8(2, 3, 4) 5 5 2

C9(3, 4) 4 5 2

C9(2, 3, 4) 6 6 2

C10(4, 5) 3 4 2

C10(3, 4, 5) 5 6 2

C10(2, 3, 4, 5) 7 7 2

C11(4, 5) 4 6 2

C11(3, 4, 5) 6 7 2

C11(2, 3, 4, 5) 8 8 2

C12(5, 6) 3 4 2

C12(4, 5, 6) 5 7 3

C12(3, 4, 5, 6) 7 8 2

C12(2, 3, 4, 5, 6) 9 9 2

C13(5, 6) 4 6 2

C13(4, 5, 6) 6 8 3

C13(3, 4, 5, 6) 8 9 2

C13(2, 3, 4, 5, 6) 10 10 2

C14(6, 7) 3 4 3

C14(5, 6, 7) 5 8 3

C14(4, 5, 6, 7) 7 9 3

C14(3, 4, 5, 6, 7) 9 10 2

C14(2, 3, 4, 5, 6, 7) 11 11 2

C15(6, 7) 4 6 3

C15(5, 6, 7) 6 9 3

C15(4, 5, 6, 7) 8 10 3

C15(3, 4, 5, 6, 7) 10 11 2

C15(2, 3, 4, 5, 6, 7) 12 12 2

C16(7, 8) 3 4 3

C16(6, 7, 8) 5 8 3

C16(5, 6, 7, 8) 7 10 3

C16(4, 5, 6, 7, 8) 9 11 3

C16(3, 4, 5, 6, 7, 8) 11 12 2

C16(2, 3, 4, 5, 6, 7, 8) 13 13 2
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Table 9. The family of circulant graphs of the form C2n(1, 3, 5, . . .) for n ≤ 8.

G K-Regularity Z(G) P (G)

C2(1) 1 1 1

C4(1) 2 2 1

C6(1) 2 2 2

C6(1, 3) 3 4 1

C8(1) 2 2 3

C8(1, 3) 4 6 1

C10(1) 2 2 4

C10(1, 3) 4 6 1

C10(1, 3, 5) 5 8 1

C12(1) 2 2 5

C12(1, 3) 4 6 2

C12(1, 3, 5) 6 10 1

C14(1) 2 2 6

C14(1, 3) 4 6 2

C14(1, 3, 5) 6 10 1

C14(1, 3, 5, 7) 7 12 1

C16(1) 2 2 7

C16(1, 3) 4 6 3

C16(1, 3, 5) 6 10 2

C16(1, 3, 5, 7) 8 14 1
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Table 10. The family of circulant graphs of the form C2n+1(2, 4, 6, . . .) for
n ≤ 8.

G K-Regularity Z(G) P (G)

C3(2) 2 2 1

C5(2) 2 2 2

C7(2) 2 2 3

C9(2) 2 2 4

C9(2, 4) 4 4 3

C11(2) 2 2 5

C11(2, 4) 4 4 4

C13(2) 2 2 6

C13(2, 4) 4 4 5

C13(2, 4, 6) 6 6 4

C15(2) 2 2 7

C15(2, 4) 4 4 6

C15(2, 4, 6) 6 6 5

C17(2) 2 2 8

C17(2, 4) 4 4 7

C17(2, 4, 6) 6 6 6

C17(2, 4, 6, 8) 8 8 5

C19(2) 2 2 9

C19(2, 4) 4 4 8

C19(2, 4, 6) 6 6 7

C19(2, 4, 6, 8) 8 8 6

C21(2) 2 2 10

C21(2, 4) 4 4 9

C21(2, 4, 6) 6 6 8

C21(2, 4, 6, 8) 8 8 7

C21(2, 4, 6, 8, 10) 10 10 6

C23(2) 2 2 11

C23(2, 4) 4 4 10

C23(2, 4, 6) 6 6 9

C23(2, 4, 6, 8) 8 8 8

C23(2, 4, 6, 8, 10) 10 10 7

C25(2) 2 2 12

C25(2, 4) 4 4 11

C25(2, 4, 6) 6 6 10

C25(2, 4, 6, 8) 8 8 9

C25(2, 4, 6, 8, 10) 10 10 8

C25(2, 4, 6, 8, 10, 12) 12 12 7
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Table 11. The family of circulant graphs Cn(a, a + 1, . . . , b − 1, b) for
1 < a ≤ b < n

2
.

G K-Regularity Z(G) P (G)

C6(2) 2 4 1

C7(2) 2 2 3

C8(2, 3) 4 4 2

C9(2, 3) 4 5 2

C10(2, 3, 4) 6 6 2

C11(2, 3, 4) 6 7 2

C12(2, 3, 4, 5) 8 8 2

C13(2, 3, 4, 5) 8 9 2

C14(2, 3, 4, 5, 6) 10 10 2

C15(2, 3, 4, 5, 6) 10 11 2

C16(2, 3, 4, 5, 6, 7) 12 12 2
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