
On the Groebner bases of Ideals of Finite

Sets of Points in P1 × P1

by

Jason Palombaro

A project submitted to the Department of

Mathematical Sciences in conformity with the requirements

for Math 790 (Major Research Project)

McMaster University

Hamilton, Ontario, Canada

copyright c©(2017) Jason Palombaro

Abstract

In this report, we are interested in determining the Groebner basis for the defining
ideal of a finite set of points in P1 × P1. In addition, we would also like to be able to
get the reduced Groebner basis or the Universal Groebner basis. Our first main result
is proving that the set of generators of the defining ideal of an arithmetically Cohen-
Macaulay set of points in P1 × P1, given by E. Guardo and A. Van Tuyl in [4], is the
Universal Groebner basis. We show that this set of generators satisfies Buchberger’s
criterion under an arbitrary monomial order, and then deduce that it is also reduced.
Our second main result is a new algorithm that computes the reduced Groebner basis for
the defining ideal of any finite set of points in P1×P1. This new algorithm is based upon
the Buchberger-Moeller algorithm for ideals of points in Pn.

i

Acknowledgements

I would like to express my great appreciation to my supervisor Adam Van Tuyl. He
has been exceptionally generous, friendly, and patient while devoting his time to guide
me through this project. It is the knowledge that I have gained from working under his
supervision that has allowed me to succeed in completing this project. I am very grateful
for everything he has done, and for this, I would like to give him my most sincere thank
you.

I am also particularly grateful for the assistance given by the professors at McMaster
University that I have had the pleasure of learning from. All of whom, I would like to
thank for their time and overall dedication to their students.

My special thanks are extended to the faculty and staff of the department of Mathe-
matics and Statistics at McMaster University. There have been numerous instances where
they have been particularly helpful, for which I am very much appreciative.

ii

Contents

Abstract i

Acknowledgements ii

Chapter 1. Introduction 1

Chapter 2. Background Algebra 3
1. Monomials and Monomial Orders 3
2. Division Algorithm, Groebner Bases, and Buchberger’s Criterion 5
3. Homogeneous Polynomials 11
4. Hilbert Functions 16

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 19
1. Points in Projective Space Pn 19
2. The Buchberger-Möller Algorithm 22

Chapter 4. Points in P1 × P1 28
1. Points and biprojective space 28
2. Algebra of points in P1 × P1 32
3. The Universal Groebner basis for the defining ideal of an ACM set of points 35

Chapter 5. Buchberger-Moeller Algorithm for P1 × P1 40
1. Buchberger-Moeller Algorithm for P1 × P1 40
2. Future Directions 46

Bibliography 48

iii

CHAPTER 1

Introduction

A Groebner basis is a generating set of an ideal that gives us some useful information
about the ideal. They were introduced by Bruno Buchberger, who also developed a
criterion for a set of generators of an ideal to be a Groebner basis. This criterion is known
as Buchberger’s criterion.

Groebner bases have applications in many topics of mathematics, including algebraic
geometry and graph theory. However, even if we are given generators of an ideal, we do
not always have a Groebner basis. Sometimes we do not even have generators of the ideal.
Often in these cases, if we wish to know the reduced Groebner basis of a certain ideal,
the computations needed to find it can be quite long.

In this report, we will look at the Buchberger-Moeller algorithm, which computes the
reduced Groebner basis for the defining ideal of a finite set of points in Pn with respect to
any given monomial order. It was developed by B. Buchberger and H.M. Moeller in [1].
Our purpose is to develop a version of the algorithm that will allow us to compute the
Groebner basis of the defining ideal for a set of points in P1× P1 for any given monomial
order.

In Chapter 2, we will develop the algebraic background that will be required. A sig-
nificant part of the background algebra needed will be facts about Groebner bases and
the division algorithm. Chapter 2 will start by defining the basics such as monomials and
monomial orders. We then introduce the definition of a Groebner basis, as well as how
they are used. Throughout the chapter, we will see examples of the division algorithm and
Groebner bases, especially focusing on how they are related through S-polynomials and
Buchberger’s criterion. We will then define homogeneous polynomials and give Theorem
2.30, which states that two homogeneous polynomials in seperate variables satisfy Buch-
berger’s criterion. This theorem will play a key role in Chapter 4 when proving a given
set of generators of a certain defining ideal is in fact a Groebner basis. Following that,
we introduce Hilbert functions. We end the chapter by showing that having a Groebner
basis for a homogeneous ideal makes the computation of its Hilbert function easier.

The third chapter focuses on the Buchberger-Moeller algorithm for ideals of points in
Pn. This algorithm computes the reduced Groebner basis for the defining ideal of a set of
points in Pn. Before the algorithm is introduced, the relevant definitions of the projective
space Pn and points in Pn are given. After that, the defining ideal of a set of points in
Pn and the Hilbert function for a set of points in Pn are defined. We then prove that the
Hilbert function of the defining ideal of a set of points in Pn eventually becomes constant.

1

Chapter 1. Introduction 2

This fact plays a key role in the Buchberger-Moeller algorithm because it provides a
stopping criterion. The chapter ends with the presentation of the Buchberger-Moeller
algorithm for Pn. We give a proof for the algorithm, a rough explanation of how it works,
and an example.

Once we have what we need about n-dimensional projective space, we look at the
biprojective space P1 × P1. Much of this chapter heavily relies on information presented
by E. Guardo and A. Van Tuyl in [4]. We will build the required background that will
allow us to modify the Buchberger-Moeller algorithm for Pn so that it can be used to
generate the Groebner basis for the defining ideal of a finite set of points in P1 × P1.
We start by defining the space P1 × P1, points in P1 × P1, and the natural projection
maps. We follow these definitions with examples. After that, we look at the algebra of
the biprojective space P1 × P1. We introduce the defining ideal and Hilbert function of
a bihomogeneous ideal of a finite set of points in P1 × P1. We end the chapter with a
result on the Groebner basis of Arithmetically Cohen-Macaulay sets of points in P1×P1.
We use theorems presented in this report, as well as results obtained by E. Guardo and
A. Van Tuyl in [4], to give the Groebner basis of the defining ideal of an Arithmetically
Cohen-Macaulay set of points in P1×P1 (see Theorem 4.24). However, this result is only
valid for this particular class of sets of points.

The last chapter contains our new modified version of the Buchberger-Moeller algo-
rithm for P1×P1. Using the ideas in the Buchberger-Moeller algorithm for Pn, we develop
what we call the Buchberger-Moeller algorithm for P1×P1. With this modified algorithm,
we are able to compute the Groebner basis for the defining ideal of any finite set of points
in P1 × P1 with respect to any given monomial order. We give a proof of the algorithm
which is followed by an example. We then finish by giving some ideas for future directions.

It is assumed that the reader has some background in algebra. We will assume that the
reader understands the definitions and concepts related to linear algebra and ring theory.
The reader should be familiar with matrix reductions, rings, ideals (including quotient
ideals), fields, polynomial rings, k-vector spaces, and k-bases (where k is an arbitrary
field). We also assume a moderate understanding of set theory, including cartesian prod-
ucts, direct sums, and sets of equivalence classes that arise from a particular equivalence
relation.

The main reference for Chapter 2 is [5], by B. Hassett. We use his notation for many
of the ideas introduced in Chapter 2. M. Kreuzer and L. Robbiano’s [6] is the primary
reference for Chapter 3. The definitions in this chapter are based on this reference, and
we present the Buchberger-Moeller algorithm for Pn the same way it was presented by M.
Kreuzer and L. Robbiano in [6]. In the fourth chapter, the main reference used is [4], by
E. Guardo and A. Van Tuyl. We use their notation throughout Chapters 4 and 5, and
refer to their work for particular results that are not proved in this report.

CHAPTER 2

Background Algebra

This chapter presents some of the algebraic definitions that we will need, as well as
the definition of a Groebner basis, the division algorithm, and Buchberger’s criterion. We
also look at the Hilbert function and present some theorems that will be useful in later
chapters. Throughout this chapter we will let k be any field, and we will refer to the ring
k[x1, x2, . . . , xn] as S.

1. Monomials and Monomial Orders

We begin with the definitions related to monomials. It is assumed that the reader is
familiar with what monomials and polynomials are. The following definition introduces
the notation that will be used for monomials.

Definition 2.1. A monomial will be represented as xα = xα1
1 x

α2
2 · · · xαnn where the

monomial xα is described by the vector α = (α1, α2, . . . , αn) ∈ Nn.

Sometimes instead of referring to just the monomials of a polynomial, we may also
be concerned with their coefficients. When we want to consider the monomials of a
polynomial and their respective coefficients, we refer to them as terms.

Definition 2.2. A term of a polynomial is a monomial of that polynomial with its
respective coefficient. If xα is a monomial appearing in a polynomial f and c ∈ k is its
coefficient, then cxα is a term of f .

Example 2.3. As an example, we will consider f = 2x−3y. The monomials appearing
in this polynomial are x and y, but the terms of f are 2x and −3y.

An important invariant of a monomial is its degree.

Definition 2.4. The degree of a monomial xα, represented by deg(xα), can be found
by adding all the entries of the vector α = (α1, α2, . . . , αn). That is,

deg(xα) =
n∑
i=1

αi.

1.1. Monomial Orders. Being able to order the monomials of a polynomial ring
is very useful and has some important consequences that will be used throughout this
report. To begin, we define what it means for an ordering on a set to be a total order.

3

Chapter 2. Background Algebra 4

Definition 2.5. A total order > on a set A is an order relation on the elements of A
such that for any two elements a1, a2 ∈ A, exactly one of the following is true:

a1 > a2,

a1 = a2, or

a1 < a2.

Example 2.6. The usual ordering > on the real numbers is a total order. For real
numbers x and y, we have x > y if x− y is positive.

Having a total order on the set of monomials is nice to have, but it is not quite sufficient
for our purposes. We need an ordering on the set of monomials that is consistent with
certain conditions.

Definition 2.7. A monomial order > is a total order on the monomials in S such
that the following two conditions are true:

(1) If xα > xβ, then xαxγ > xβxγ for any α, β, γ ∈ Nn.
(2) > is a well-ordering on the monomials of S. That is, any set of monomials has a

minimal element.

We will now present some common examples of monomial orders.

Example 2.8. First, we present the lexicographic order. We say xα >lex x
β if the

first nonzero entry of α− β = (α1 − β1, . . . , αn − βn) is positive. For example, we have

x1 >lex x2 >lex x
7
3 >lex x3x

20
4 .

We can think of this monomial order as the same as ordering words alphabetically. Note
that we are primarily concerned with how the monomial starts and not its degree.

Example 2.9. Another example of a monomial order is the graded lexicographic
order. We say xα >grlex x

β if deg(xα) > deg(xβ), or deg(xα) = deg(xβ) and xα >lex x
β.

For example, we have
x64 >grlex x

5
1 >grlex x

4
2x3 >grlex x

5
4.

Example 2.10. Our last example of a monomial order is the graded reverse lexico-
graphic order. We say xα >grelex x

β if deg(xα) > deg(xβ), or deg(xα) = deg(xβ) and the
last nonzero entry of α− β = (α1 − β1, · · · , αn − βn) is negative. For example,

x3x
2
4 >grevlex x2x3 >grevlex x1x4.

Once we fix a monomial order, we can define the leading monomial of a polynomial.

Definition 2.11. Given a monomial order >, the leading monomial of a polynomial
f , denoted LM(f), is the largest monomial appearing in f with respect to >. The leading
term of f is cLM(f) where c is the coefficient of the leading monomial of f , and is denoted
LT (f).

Example 2.12. Let f = 2x − 3y ∈ k[x, y] and let > be the lexicographic ordering.
Then we have LM(f) = x and LT (f) = 2x.

Chapter 2. Background Algebra 5

1.2. Monomial Ideals. Monomial ideals are a common type of ideal that have some
useful properties.

Definition 2.13. A monomial ideal I ⊂ S is an ideal generated by monomials in S.
That is, if I is a monomial ideal of S, then there is some subset A ⊂ S of monomials such
that

I = 〈m |m ∈ A〉.

The ideal of leading terms of any ideal I ⊂ S is an example of a monomial ideal.

Definition 2.14. For any monomial order and ideal I ⊂ S, the ideal of leading terms
is defined

LT (I) = 〈LT (g)|g ∈ I〉.

2. Division Algorithm, Groebner Bases, and Buchberger’s Criterion

To start this section we will introduce the division algorithm. The division algorithm
is a process that is used to reduce polynomials over an ideal.

2.1. Division Algorithm. The division algorithm is a procedure that can sometimes
determine if a given polynomial g ∈ S is in a given ideal 〈f1, . . . , fr〉, fi ∈ S.

Fix any monomial order, and let f1, . . . , fr ∈ S be nonzero polynomials and let g be a
polynomial in S. The division algorithm over f1, . . . , fr ∈ S is given by the following steps:

First, we set g0 = g. If LM(fj) does not divide LM(g0) for any j, then we stop. Otherwise
pick some fj0 such that LM(fj0)|LM(g0) and we will cancel the leading terms by setting

g1 = g0 − (LT (g0)/LT (fj0))fj0 .

Now given gi, if LM(fj) does not divide LM(gi) for any j, then we stop. Otherwise pick
some fji such that LM(fji)|LM(gi) and we will cancel the leading terms by setting

gi+1 = gi − (LT (gi)/LT (fji))fji .

This gives a decreasing sequence of monomials

LM(g0) > LM(g1) > LM(g2) > · · ·

which must be finite because there are only finitely many monomials less than LM(g0)
(by the well-ordering property that any monomial order must possess). If the process
ends with gN = 0 for some N , then we say we get a remainder of 0 and we can write

g =
N−1∑
i=0

(LT (gi)/LT (fji))fji .

Since each fji ∈ I, it follows that g ∈ I.

However, if the process ends with gN 6= 0, then the division algorithm does not tell us
whether or not g is in I. It is possible that g ∈ I even if LM(fj) does not divide LM(g)

Chapter 2. Background Algebra 6

for any j. To fix this problem, we need our generating elements of I to form a Groebner
basis for I. We will define a Groebner basis in the next subsection, which will come after
this useful lemma involving the division algorithm.

Lemma 2.15. Given f1, . . . , fr ∈ S, if we apply the division algorithm to a polynomial
g that is divisible by fj for some j, i.e. g = fjg

′, then we will eventually get a remainder
of 0.

Proof. Let g = g′fj for some j and we will show that applying the division algorithm
to g over f1, . . . , fr ∈ S gives a remainder of 0. First write g′ =

∑s
i=1 cix

αi with xα1 >
xα2 > · · · > xαs and ci ∈ k for all i = 1, . . . , s. We have LT (g) = LT (g′)LT (fj) which is
divisible by LT (fj). Now we compute

g1 = g − LT (g)

LT (fj)
fj

= g′fj − LT (g′)fj

= fj(
s∑
i=2

cix
αi).

Now assume k ≤ s and let gk−1 = fj(
∑s

i=k cix
αi) so that we can use induction. We have

LT (gk−1) = LT (fj)LT (
s∑
i=k

cix
αi) = ckx

αkLT (fj).

To get gk we compute

gk = gk−1 −
LT (gk−1)

LT (fj)
fj

= [fj(
s∑
i=k

cix
αi)]− ckx

αkLT (fj)

LT (fj)
fj

= fj(
s∑
i=k

cix
αi − ckxαk)

= fj(
s∑

i=k+1

cix
αi).

Now we know gk = fi(
∑s

i=k+1 cix
αi) for all k ≤ s. This gives

gs = fi(
s∑

i=s+1

cix
αi)

= 0

which shows that we get a remainder of 0 after applying the division algorithm to g = g′fi
over f1, . . . , fr. �

Chapter 2. Background Algebra 7

2.2. Groebner Bases. Given a particular monomial order, any ideal in a polynomial
ring has a Groebner basis with respect to that order. As stated in the previous subsection,
if we have a Groebner bases for a given ideal then it allows us to determine if a certain
polynomial is in the given ideal by applying the division algorithm. However, one question
that arises is, “how do we tell if a given set of polynomials is a Groebner basis for an
ideal?”. This question will be answered in this section. We will go on to present some
other defintions and theorems that will be helpful later in this project. For now, we begin
this subsection with the definition of a Groebner basis.

Definition 2.16. For any monomial order and ideal I ⊂ S, we define a Groebner
basis for I to be a set of nonzero polynomials

{f1, . . . , fr} ⊂ I

such that LT (I) is generated by LT (f1), . . . , LT (fr). We say that a Groebner basis is
reduced if for each i = 1, . . . , r, LT (fi) has a coefficient of one and does not divide any term
in the other polynomials of {f1, . . . , fr}. Furthermore, if we have a Groebner basis that
is the reduced Groebner basis for every monomial order, then it is called the Universal
Groebner basis.

Although the order being considered will normally affect what polynomials are in a
Groebner basis, the purposes are consistent. One very important fact about any Groebner
basis of an ideal I is that the Groebner basis actually generates I.

Theorem 2.17. If {f1, . . . , fr} form a Groebner basis for an ideal I, then I = 〈f1, . . . , fr〉.

We will not go over the proof for this theorem, but one can be found in [5]. We now
have the following theorem.

Theorem 2.18. For any monomial order and ideal I ⊂ S, if {f1, . . . , fr} is a Groebner
basis for I, then we can apply the division algorithm with f1, . . . , fr to determine whether
or not g is in I. If the division algorithm ends with gN = 0 for some N , then we have
g ∈ I. If the division algorithm ends with gN 6= 0 for some N , then g /∈ I.

Proof. We already know that if gN = 0 for some N , then g ∈ I. If the algorithm
ends with gN 6= 0 with LM(gN) not divisible by LM(fj) for any j, then we write

g = gN +
N−1∑
i=0

(LT (gi)/LT (fji))fji .

We have that
N−1∑
i=0

(LT (gi)/LT (fji))fji ∈ I

since each fji ∈ I. We also have that LM(gN) is not divisible by LM(fj) for any j, which
implies that gN /∈ I since {f1, . . . , fr} is a Grobner basis for I. From this we conclude
that g /∈ I because g and gN differ by an element of I, but gN /∈ I. �

Chapter 2. Background Algebra 8

Example 2.19. Using the graded reverse lexicographic order, let I = 〈x+y, xy+z〉 ⊂
k[x, y, z]. We will use the division algorithm on the polynomial x2 − z. The leading
monomial of x2 − z is x2 which is divisible by LM(x+ y) = x. Now we compute

(x2 − z)− x2

x
(x+ y) = −xy − z.

Now LM(−xy − z) = xy which is divisible by LM(xy + z) = xy so the next step is to
compute

(−xy − z)− −xy
xy

(xy + z) = 0.

We can conclude x2 − z ∈ I because by working backwards we can get

x2 − z = x(x+ y)− (xy + z).

Now consider the polynomial y2− z = y(x+ y)− (xy+ z) ∈ I = 〈x+ y, xy+ z〉. If we
use the division algorithm on y2 − z, we stop immediately because LM(y2 − z) = y2 is
not divisible by LM(x+ y) = x or LM(xy+ z) = xy. In this case, the division algorithm
fails to determine whether or not y2 − z is in I, even though y2 − z is not in I.

However, if we have a Grobner basis for I, then the division algorithm will not fail to
determine if a given polynomial is in I. For example, x + y and y2 − z form a Grobner
basis for I = 〈x+ y, xy + z〉 (we will verify the fact that x+ y and y2 − z do in fact form
a Grobner basis after presenting Buchberger’s criterion). For now, we will show that we
have the equality I = 〈x+y, y2−z〉 by using the division algorithm over x+y and y2−z.
We know that y2 − z = y(x+ y)− (xy + z) ∈ I and of course x+ y ∈ I, so we know that

〈x+ y, y2 − z〉 ⊂ I.

We will prove that x + y and y2 − z generate I by using the division algorithm to prove
that x + y and xy + z are both in 〈x + y, y2 − z〉. Since we claim that x + y and y2 − z
form a Groebner basis for I, we must get a remainder of 0 when applying the division
algorithm to any polynomial in I over x+ y and y2 − z.

Applying the division algorithm to x+y is trivial since it is a generator of 〈x+y, y2−z〉.
Now we apply the division algorithm to xy+z. The monomial LM(xy+z) = xy is divisible
by LM(x+ y) = x so we compute

(xy + z)− xy

x
(x+ y) = −y2 + z.

Now we look at LM(−y2 + z) = y2, and we can see it is divisible by LM(y2 − z) = y2.
Now we compute

(−y2 + z)− −y
2

y2
(y2 − z) = 0.

We thus have that xy+z = y(x+y)−(y2−z) which proves that xy+z ∈ 〈x+y, y2−z〉.
This shows the containment

I = 〈x+ y, xy + z〉 ⊂ 〈x+ y, y2 − z〉

Chapter 2. Background Algebra 9

which allows us to conclude that I = 〈x+ y, y2 − z〉.

The following theorem will be useful to us in Chapter 4. We present it now because the
proof involves understanding the concept of a Groebner basis, as well as some relatively
basic algebra.

Theorem 2.20. Let {f1, . . . , fr} be a Groebner basis for an ideal I. If h is any form,
then {hf1, . . . , hfr} is a Groebner basis for hI = 〈hf | f ∈ I〉.

Proof. First we will show that hI = 〈hf1, . . . , hfr〉. Let g ∈ 〈hf1, . . . , hfr〉 and write

g = a1hf1 + · · ·+ arhfr

= h(a1f1 + · · ·+ arfr).

Since a1f1 + · · · + arfr ∈ I, we conclude that g ∈ hI. This shows hI ⊃ 〈hf1, . . . , hfr〉.
Now to show hI ⊂ 〈hf1, . . . , hfr〉, let g ∈ hI, and we will show g ∈ 〈hf1, . . . , hfr〉. Since
g ∈ hI, we can write g = hg′ with g′ ∈ I. Now we write g′ = a1f1 + · · ·+ arfr to get

g = h(a1f1 + · · ·+ arfr)

= a1hf1 + · · ·+ arhfr ∈ 〈hf1, . . . , hfr〉
which now gives us hI = 〈hf1, . . . , hfr〉. Now to show that {hf1, . . . , hfr} is a Groebner
basis for hI, let g ∈ hI and write g = hg′ with g′ ∈ I. Now using the fact that {f1, . . . , fr}
is a Grobner Basis for I, we write g′ = a1f1 + · · · + arfr with LT (fi)|LT (g′) for some i.
Let c = LT (g′)/LT (fi) so that LT (g′) = cLT (fi). Now we look at LT (g):

LT (g) = LT (h)LT (g′)

= LT (h)[cLT (fi)]

= cLT (h)LT (fi)

= cLT (hfi).

So LT (hfi)|LT (g) and this shows us that LT (hI) = 〈LT (hf1), . . . LT (hfr)〉 since LT (hI)
is a monomial ideal. This completes the proof that {hf1, . . . , hfr} is a Groebner basis for
hI. �

2.3. Buchberger’s Criterion. If we are given a set of generators for any ideal I, we
may want to know if those generators form a Groebner basis for I. To determine whether
or not the given generators form a Groebner basis for I, we can use Buchberger’s criterion.
Before learning Buchberger’s criterion, we must define S-polynomials. In order to define
S-polynomials, we will need the definition of the least common multiple of monomials.

Definition 2.21. The least common multiple of monomials xα and xβ is the smallest
monomial in S that is divisible by both xα and xβ. We can also write it as

LCM(xα, xβ) = x
max(α1,β1)
1 · · ·xmax(αn,βn)n .

Now that we have defined the least common multiple of two monomials, we can move
on to S-polynomials.

Chapter 2. Background Algebra 10

Definition 2.22. If f1 and f2 are polynomials in S, let

xα = LCM(LM(f1), LM(f2)).

The S-polynomial formed from f1 and f2 is defined as

S(f1, f2) = (xα/LT (f1))f1 − (xα/LT (f2))f2.

An important consequence of the S-polynomial is that cancellation occurs. The leading
terms of (xα/LT (f1))f1 and (xα/LT (f2))f2 are made to be the same so that they cancel.
This allows us to write the S-polynomial as

S(f1, f2) = (xα/LT (f1))(f1 − LT (f1))− (xα/LT (f2))(f2 − LT (f2))

since we are just deleting the terms that will cancel each other out.

Remark 2.23. The naming convention of the S-polynomial has nothing to do with
the fact that we are referring to the polynomial ring as S.

Example 2.24. Under the graded reverse lexicographic order, we will compute the
S-polynomial for f1 = x21 + 2x22 and f2 = 5x1x3 − x4. We have

S(f1, f2) =
x21x3
x21

(x21 + 2x22)−
x21x3
5x1x3

(5x1x3 − x4)

= 2x22x3 +
1

5
x1x4.

Now that we have the required definitions, we can introduce Buchberger’s criterion.
Buchberger’s criterion will allow us to determine if a given set of generators of an ideal
forms a Groebner basis.

Theorem 2.25. (Buchberger’s Criterion) For any monomial order and ideal I =
〈f1, . . . , fr〉 ⊂ S, {f1, . . . , fr} is a Groebner basis for I if and only if every S-polynomial
S(fi, fj) with 1 ≤ i < j ≤ r gives a remainder of zero after applying the division algorithm
over f1, . . . , fr.

Instead of giving a proof for Buchberger’s Criterion, we will show how it works with
an example. A complete proof for Buchberger’s criterion can be found in [5].

Example 2.26. In Example 2.19, we looked at I = 〈x+ y, xy + z〉. We claimed that
x + y and y2 − z formed a Groebner basis for I under the graded reverse lexicographic
order. We will use Buchberger’s criterion to justify this claim by showing that the S-
polynomial formed from x + y and y2 − z will give a remainder of 0 after applying the
division algorithm over x+ y and y2− z. We first compute the S-polynomial formed from
x+ y and y2 − z:

S(x+ y, y2 − z) =
xy2

x
(x+ y)− xy2

y2
(y2 − z) = y3 + xz.

Chapter 2. Background Algebra 11

Now we apply the division algorithm to y3 + xz over x + y and y2 − z. We have that
LT (y3 + xz) = y3 is divisible by LT (y2 − z) = y2 so we compute

y3 + xz − y3

y2
(y2 − z) = xz + yz.

If we note that xz + yz = z(x+ y), we can use Lemma 2.15 to conclude that we will get
a remainder of 0. Now we know that Buchberger’s criterion is satisfied so we know that
x+ y and y2 − z form a Groebner basis for I = 〈x+ y, xy + z〉.

Now we can also show that x + y and xy + z do not form a Groebner basis for I
by showing that Buchberger’s criterion is not met in this case. First we compute the
S-polynomial formed from x+ y and xy + z:

S(x+ y, xy + z) =
xy

x
(x+ y)− xy

xy
(xy + z) = y2 − z.

Now we apply the division algorithm to y2 − z over x + y and xy + z. We have that
LT (y2 − z) = y2 is not divisible by LT (x + y) = x or by LT (xy + z) = xy, so we must
stop and we do not get a remainder of 0. This means that Buchberger’s criterion is not
met, and so x+ y and xy + z do not form a Groebner basis for I.

3. Homogeneous Polynomials

Throughout this report, we will be working with homogeneous polynomials. We begin
this section with their definition, and then present a theorem that will be used in Chapter
4.

Definition 2.27. A homogeneous polynomial is a polynomial f ∈ S whose terms are
all the same degree.

Example 2.28. An example of a homogeneous polynomial of degree two is f = x21 +
2x1x2 + x22. Another example is g = x41 + x1x

3
2 + x22x

2
3 + x43 which is a degree four

homogeneous polynomial. However, h = x31 + x22 + x23 is not homogeneous because one of
its terms is degree three, and the other two terms are degree two.

Theorem 2.29. Let R = k[x1, . . . , xn, y1, . . . , ym] and let f ∈ k[x1, . . . , xn] ⊂ R and
g ∈ k[y1, . . . , ym] ⊂ R be homogeneous polynomials viewed as polynomials of R. Under
any ordering that has xi > yj for any i, j = 0, 1, the S-polynomial formed from f and g
gives a remainder of 0 after applying the division algorithm over any set of polynomials
containing f and g.

Proof. Let g =
∑r

i=1 ciy
αi be such that yα1 > yα2 > · · · > yαr . By the construction

of the S-polynomials and division algorithm, we are cancelling the monomials in a way
that preserves the proportionalities of the coefficients. Since k is a field, we essentially
have the same process regardless of the leading coefficients of f and g. This means we
can assume the leading coefficients of f and g are both 1 so that LT (f) = LM(f) and
LT (g) = LM(g). Let h1 be the S-polynomial formed from f and g and note that

Chapter 2. Background Algebra 12

LCM(LM(f), LM(g)) = LM(f)LM(g) = LT (f)LT (g).

We have

h1 = S(f, g)

=
LT (f)LT (g)

LT (f)
f − LT (f)LT (g)

LT (g)
g

= LT (g) · f − LT (f) · g
= LT (g) · (f − LT (f))− LT (f) · (g − LT (g))

= yα1 · (f − LT (f))− LT (f) · (
r∑
i=2

ciy
αi).

Now we apply the division algorithm to h1 = S(f, g). Since we are working under
any ordering that has xi > yj for any i, j = 0, 1, the leading term of h1 will have the
largest degree of the xi variables out of any monomial appearing in h1. This means
we can ignore the yi variables when looking for the leading term. Any monomial in h1
is the product of a monomial from f and a monomial from g. Since we are ignoring
the y variables, the largest monomials in h1 are the monomials that are divisible by
LT (f). These monomials are −c2yα2LT (f), . . . ,−cryαrLT (f). From these monomials,
we conclude that LT (h1) = −c2yα2LT (f). So we subtract −c2yα2f from h1 as per the
division algorithm, and we call the result h2:

h2 = h1 + c2y
α2f

= (h1 − LT (h1)) + c2y
α2(f − LT (f))

= [yα1 · (f − LT (f))− LT (f) · (
r∑
i=2

ciy
αi)] + c2y

α2LT (f) + c2y
α2(f − LT (f))

= (
2∑
i=1

ciy
αi)(f − LT (f))− LT (f)(

r∑
i=3

ciy
αi).

Now inductively, for s ≤ r, let

hs−1 = (
s−1∑
i=1

ciy
αi)(f − LT (f))− LT (f)(

r∑
i=s

ciy
αi).

Using the same idea we used to find LT (h1), we get

LT (hs−1) = −LT (f) · LT (
r∑
i=s

ciy
αi) = −csyαsLT (f).

Chapter 2. Background Algebra 13

Now after continuing with the division algorithm on hs, we get

hs = hs−1 + csy
αsf

= (hs−1 − LT (hs−1)) + csy
αs(f − LT (f))

= (
s−1∑
i=1

ciy
αi) · (f − LT (f))− LT (f) · (

r∑
i=s

ciy
αi) + csy

αsLT (f) + csy
αs(f − LT (f))

= (
s∑
i=1

ciy
αi) · (f − LT (f))− LT (f) · (

r∑
i=s+1

ciy
αi).

Now set s = r, and we get

hr = (
r∑
i=1

ciy
αi) · (f − LT (f))− LT (f) · (

r∑
i=r+1

ciy
αi)

= g(f − LT (f)).

By Lemma 2.15 we know that applying the division algorithm to hr = g(f − LT (f))
will eventually give a remainder of 0 since hr is a multiple of g. This proves that the S-
polynomial formed from f and g gives 0 remainder after applying the division algorithm
over f and g. �

Using the ideas in the previous proof, we can extend the above theorem to any mono-
mial order.

Theorem 2.30. Let R = k[x1, . . . , xn, y1, . . . , ym] and let f ∈ k[x1, . . . , xn] ⊂ R and
g ∈ k[y1, . . . , ym] ⊂ R be homogeneous polynomials viewed as polynomials in R. Under
any monomial ordering, the S-polynomial formed from f and g gives a remainder of 0
after applying the division algorithm over any set of polynomials containing f and g.

Proof. Let f =
∑r

i=1 aix
αi and g =

∑k
i=j bjy

βj be such that xα1 > xα2 > · · · > xαr

and yβ1 > yβ2 > · · · > yβk . As in the proof of the previous theorem, assume that the
leading coefficients of f and g are both 1 so that LT (f) = LM(f) and LT (g) = LM(g).
Let h1 be the S-polynomial formed from f and g and note that

LCM(LM(f), LM(g)) = LM(f)LM(g) = LT (f)LT (g).

We have

Chapter 2. Background Algebra 14

h1 = S(f, g)

=
LT (f)LT (g)

LT (f)
f − LT (f)LT (g)

LT (g)
g

= LT (g) · f − LT (f) · g
= LT (g) · (f − LT (f))− LT (f) · (g − LT (g))

= yβ1 · (
r∑
i=2

aix
αi)− xα1 · (

k∑
j=2

bjy
βj).

We will prove by induction that we get a remainder of 0 when we apply the division
algorithm to h1 = S(f, g) over f and g. We claim that after every operation of the division
algorithm, there will be non-negative integers 1 ≤ r′ ≤ r and 1 ≤ k′ ≤ k such that

hs = (
k′∑
j=1

bjy
βj) · (

r∑
i=r′+1

aix
αi)− (

r′∑
i=1

aix
αi) · (

k∑
j=k′+1

bjy
βj) with s = r′ + k′ − 1.

We have that this is true for s = 1 with r′ and k′ both equal to one. The first thing
we must note is that there are no terms cancelling between the sums. This is easy to

see because the monomial terms of (
∑k′

j=1 bjy
βj) · (

∑r
i=r′+1 aix

αi) have form xαiyβj with
r′ + 1 ≤ i ≤ r and 1 ≤ j ≤ k′, whereas the monomial terms of the second sum have
the same form, but with 1 ≤ i ≤ r′ and k′ + 1 ≤ j ≤ k. Since αi1 6= αi2 for i1 6= i2
and βj1 6= βj2 for j1 6= j2, we have that after expanding, there is no cancellation of terms
between the sums. Now we will use induction by applying the division algorithm to hs−1,
written as above, for some 1 ≤ r′ ≤ r and 1 ≤ k′ ≤ k with s− 1 = r′+ k′− 1. Since there
is no cancellation occurring, the leading term of hs−1 will be either

LT (
k′∑
j=1

bjy
βj

r∑
i=r′+1

aix
αi) = ar′+1x

αr′+1LT (g)

or

LT (−
r′∑
i=1

aix
αi

k∑
j=k′+1

bjy
βj) = −bk′+1y

βk′+1LT (f).

Chapter 2. Background Algebra 15

We will show that in both cases we get the desired form for hs. First, we will consider
the case where LT (hs−1) = ar′+1x

αr′+1LT (g). If we subtract ar′+1x
αr′+1g, we get

hs = hs−1 − ar′+1x
αr′+1g

=
k′∑
j=1

bjy
βj

r∑
i=r′+1

aix
αi −

r′∑
i=1

aix
αi

k∑
j=k′+1

bjy
βj − ar′+1x

αr′+1(
k′∑
j=1

bjy
βj +

k∑
j=k′+1

bjy
βj)

=
k′∑
j=1

bjy
βj(

r∑
i=r′+1

aix
αi − ar′+1x

αr′+1)− (
r′∑
i=1

aix
αi + ar′+1x

αr′+1)
k∑

j=k′+1

bjy
βj

=
k′∑
j=1

bjy
βj

r∑
i=(r′+1)+1

aix
αi −

(r′+1)∑
i=1

aix
αi

k∑
j=k′+1

bjy
βj .

Now we can see that hs is written in the desired form with s = (r′ + 1) + k′ − 1. If we
instead had that LT (hs) = −bk′+1y

βk′+1LT (f), then we would subtract −bk′+1y
βk′+1f from

hs−1 to get

hs = hs−1 + bk′+1y
βk′+1f

=
k′∑
j=1

bjy
βj

r∑
i=r′+1

aix
αi −

r′∑
i=1

aix
αi

k∑
j=k′+1

bjy
βj + bk′+1y

βk′+1(
r′∑
i=1

aix
αi +

r∑
i=r′+1

aix
αi)

= (
k′∑
j=1

bjy
βj + bk′+1y

βk′+1)
r∑

i=r′+1

aix
αi −

r′∑
i=1

aix
αi(

k∑
j=k′+1

bjy
βj − bk′+1y

βk′+1)

=

(k′+1)∑
j=1

bjy
βj

r∑
i=r′+1

aix
αi −

r′∑
i=1

aix
αi

k∑
j=(k′+1)+1

bjy
βj .

Now again, we see that hs is written in the desired form with s = r′ + (k′ + 1) − 1. At
each step of the division algorithm, we just end up increasing either r′ or k′ by one until
we eventually get either r′ = r or k′ = k for some s = r′ + k′ − 1. At that point, we have
either

hs =
k′∑
j=1

bjy
αj

r∑
i=r+1

aix
αi −

r∑
i=1

aix
αi

k∑
j=k′+1

bjy
βj = −(

k∑
j=k′+1

bjy
βj)f

or

hs =
k∑
j=1

bjy
αj

r∑
i=r′+1

aix
αi −

r′∑
i=1

aix
αi

k∑
j=k+1

bjy
βj = (

r∑
i=r′+1

aix
αi)g.

By Lemma 2.15, we know that in either case applying the division algorithm to hs =
−(
∑k

j=k′+1 bjy
βj)f or hs = (

∑r
i=r′+1 aix

αi)g will eventually give a remainder of 0. This
proves that the S-polynomial formed from f and g gives a remainder of 0 after applying
the division algorithm over f and g. �

Chapter 2. Background Algebra 16

4. Hilbert Functions

The Hilbert function, which will be used in the main result, gives some numerical
information about a graded ring. We first present the requisite background.

Definition 2.31. A graded ring is a ring that is a direct sum of abelian groups Ri

such that RiRj ⊂ R(i+j).

Example 2.32. We have that S = k[x1, . . . , xn] is a graded ring where Si is the
additive abelian group generated by all monomials of degree i. This is because any
polynomial in S can be written as the direct sum of homogeneous polynomials that are
all of different degrees (by grouping all the monomials into their respective degrees). Now
each of these homogeneous polynomials are a sum of monomials of a fixed degree, so
belong to Si for some i. From this we conclude that

S =
⊕
i∈N

Si.

It is easy to see that SiSj ⊂ Si+j because the product of any two monomials of degrees
i and j will have degree i + j. This implies that the product of any two homogeneous
polynomials of degrees i and j will have degree i+ j so we have the containment property
needed to be a graded ring.

Definition 2.33. A homogeneous ideal is an ideal that is generated by homogeneous
polynomials.

Theorem 2.34. Let I be a homogeneous ideal and let f ∈ I. If we write f = f0 +
· · · + fd where fi is the sum of all monomials in f that are of degree i, then fi ∈ I for
i = 0, . . . , d.

It is not very hard to see why this is true. If the reader is interested in seeing a proof,
one can be found in [3].

Lemma 2.35. A homogeneous ideal is a graded ring.

Proof. Let I be a homogeneous ideal, and let Ii be the additive abelian group gener-
ated by all homogeneous polynomials in I of degree i. By the previous theorem, we have
that if f is a polynomial in I, then we can write f =

∑
i fi where each fi is homogeneus

of degree i and is also in I. Each fi is in Ii so we can write I =
⊕

i∈N Ii.

We also have that IiIj ⊂ Ii+j because the product of two homogeneous polynomials
of degrees i and j must be a homogeneous polynomial of degree i+ j. �

If I is a homogeneous ideal, then the abelian group Ii can be viewed as a finite
dimensional k-vector space. This allows us to define the Hilbert function as follows.

Definition 2.36. If I is a homogeneous ideal of S, then we define the Hilbert function
of S/I as

HFS/I = dimk(Si)− dimk(Ii).

Chapter 2. Background Algebra 17

As shown in the next theorem, the Hilbert function of a homogeneous ideal can be
completely determined by the Hilbert function of its ideal of leading terms. In this way
the Hilbert function can be determined from a monomial ideal which is easier to work
with in general.

Theorem 2.37. For any homogeneous ideal I and monomial order, we have

HFS/I(i) = HFS/LT (I)(i).

Proof. Choose any term order. Since LT (I) is a monomial ideal, we have that all
the monomials not in LT (I) form a k-basis of S/LT (I). These monomials also form a
k-basis for S/I because they are all in S/I, independent over k, and span S/I. To see that
they span S/I, let f + I ∈ S/I and suppose f is not in the span of the monomials that
are not LT (I). That is, suppose there is a term appearing in f that is in LT (I). Pick the
largest such term, call it c1x

α1 , and pick g1 ∈ I such that LT (g1) = c1x
α1 . Now reduce f

by g1 to get a polynomial equivalent to f modulo I. That is, since g1 ∈ I, we have,

(f − g1) + I = f + I.

Now the chosen monomial xα1 will not appear in our new polynomial f1 = f − g1. Also,
if there is a term appearing in f1 that is in LT (I), it will be smaller than xα1 with respect
to the chosen ordering. Again, we will choose the largest such term, call it c2x

α2 , and pick
g2 ∈ I such that LT (g2) = c2x

α2 . We reduce f1 by g2 to get f2 = f1−g2 = f−(g1+g2), and

repeat this process for each fi = f − (
∑i

k=1 gk) until we no longer can. If we eventually
stop this process, it means we have reached a number N such that there is no term
appearing in fN that is in LT (I). We know that we will only repeat this process finitely
many times before stopping because we get a sequence

xα1 > xα2 > · · ·

with xαi ∈ LT (I) for each i, which must eventually terminate because we know that
LT (I) must have a minimal element with respect to any monomial order. This implies

that our process must end with fN = f − (
∑N

k=1 gk) for some N , and no terms of fN are
in LT (I). This means that fN is in the span of the monomials not in LT (I). Since gk ∈ I
for all k, we also have that

fN + I = f − (
N∑
k=1

gk) + I = f + I.

This shows that f + I = fN + I is in the span of the monomials not in LT (I). This means
that any f + I ∈ S/I can be written as a k-linear combination of the monomials not in
LT (I), so they form a k-basis for S/I. Now we have that for any i ≥ 0, all the monomials
not in LT (I) of degree i form a k-basis for both (S/I)i and (S/LT (I))i. This of course
means that for all i ≥ 0, we have

dimk((S/I)i) = dimk((S/LT (I))i).

Chapter 2. Background Algebra 18

This gives us the desired result

HFS/I(i) = HFS/LT (I)(i) for all i ≥ 0.

�

We can connect the previous theorem with the properties of Groebner bases. The
ideal of leading terms of any homogeneous ideal is generated by the leading terms of any
Groebner basis, so we can use any given Groebner basis to obtain generators for LT (I).
This gives us the following lemma, which can be useful for computing the Hilbert function
of a homogeneous ideal if we have some Groebner basis for it.

Lemma 2.38. If I is a homogeneous ideal and {f1, . . . , fr} is a Groebner basis for I
for some monomial order, then we have

HFS/I(i) = HFS/〈LT (f1),...,LT (fr)〉(i)

Proof. This follows from the previous theorem and the fact that if we have an ideal I
and a Groebner basis {f1, . . . , fr} for I, then we have LT (I) = 〈LT (f1), . . . , LT (fr)〉. �

The above lemma implies that to compute the Hilbert function of some homogeneous
ideal, we can reduce the problem to computing the Hilbert function of a monomial ideal
using a Groebner basis.

CHAPTER 3

Buchberger-Moeller Algorithm for points in Pn

In this chapter we introduce n-dimensional projective space and points in projective
space. We then define what it means to be a defining ideal for a set of points in projective
space. Following that, we define the Hilbert function of a set of points, which requires the
knowledge presented in the previous chapter about Hilbert functions. Finally, we finish the
chapter with the projective Buchberger-Moeller algorithm. The projective Buchberger-
Moeller algorithm is an algorithm that generates the reduced Groebner basis for the
defining ideal of a given set of points in projective space that does not require Buchberger’s
criterion.

1. Points in Projective Space Pn

We first establish the definitions of projective space and points in projective space.

Definition 3.1. We define the n-dimensional projective space, denoted by Pn, to be
the set of equivalence classes of kn+1 \ {0} with respect to the relation ∼, where we have

(c0, . . . , cn) ∼ (c′0, . . . , c
′
n)

if (c0, . . . , cn) = (λc′0, . . . , λc
′
n) for some nonzero λ ∈ k.

If (c0, . . . , cn) is in kn+1 \{0}, then the equivalence class of (c0, . . . , cn) is called a point
in Pn, denoted by [c0 : · · · : cn].

If we have a set of points of Pn, say X = {p1, . . . , ps}, then we are interested in the
ideal of homogeneous polynomials which vanish over every point of X.

Definition 3.2. Let X = {p1, . . . , pr} be a set of points in Pn. The homogeneous
vanishing ideal of X (often called the defining ideal of X), denoted I(X), is defined as

I(X) = 〈f ∈ k[x0, . . . , xn] | f is homogeneous and f(pi) = 0 for all pi ∈ X〉.

It is clear that if X is any set of points in Pn, then I(X) is a homogeneous ideal.
Note that if f is homogeneous and p = [c0 : · · · : cn] is a point in projective space with
f(c0, . . . , cn) = 0, we have that

f(p) = f(λc0, . . . , λcn) = λdeg(f)f(c0, . . . , cn) = 0

for any λ ∈ k. This shows that a point in projective space is a zero of a function if any
one of its coordinate representations is a zero of that function.

19

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 20

Definition 3.3. If X is a set of points in Pn, then the Hilbert function of X is defined
as

HFX(i) = HFk[x0,...,xn]/I(X)(i) for all i ≥ 0.

The Hilbert function of any finite set of points in projective space has the property
that it eventually becomes constant. This is a useful fact because it plays a key role in
the stopping condition of the Buchberger-Moeller Algorithm.

Theorem 3.4. Let X be a finite set of points in Pn with |X| = s. Then there exists
some positive integer N such that

HFX(i) = s for all i ≥ N.

Proof. We prove the theorem by induction on the size of X. Let R = k[x0, . . . , xn],
X = {p = [c0 : · · · : cn]} ⊂ Pn, and I = I(X). Suppose HFX(i) > 1 for some i ≥ 1 (we
are also proving that N = 1 if |X| = 1). We have

HFX(i) = HFR/I(i) = HFR/LT (I)(i) for all i ≥ 0

which implies that we have

HFR/LT (I)(i) > 1 for some i ≥ 1.

If this were to be true, then we must have at least two monomials of degree i that are not
in LT (I). We will prove that this gives a contradiction. Suppose xα and xβ are monomials
not in LT (I) with α = (α0, . . . , αn) and β = (β0, . . . , βn), and let

f = cβ00 · · · cβnn xα − c
α0
0 · · · cαnn xβ.

We have that

f(c0, . . . , cn) = cβ00 · · · cβnn (cα0
0 · · · cαnn)− cα0

0 · · · cαnn (cβ00 · · · cβnn) = 0

which means that f ∈ I, and so either xα or xβ is in LT (I) which is a contradiction.

Now let Y = {p1, . . . , ps−1} ⊂ Pn, X = Y ∪{ps} ⊂ Pn, I1 = I(Y), and I2 = I({p}), and
suppose for the induction hypothesis that there is some number M such that HFY (i) =
s− 1 for all i ≥M .

We claim that the following sequence is short exact:

0→ R/(I1 ∩ I2)→ R/I1 ⊕R/I2 → R/(I1 + I2)→ 0.

Let

φ : R/(I1 ∩ I2)→ R/I1 ⊕R/I2 and ψ : R/I1 ⊕R/I2 → R/(I1 + I2)

be the first and second maps, respectively, defined by

φ(f + I1 ∩ I2) = (f + I1, f + I2) and ψ(f + I1, g + I2) = (f − g) + (I1 + I2)

respectively. We start by showing that φ is injective by showing its kernel is zero. Let
f + I1 ∩ I2 ∈ R/(I1 ∩ I2) such that φ(f + I1 ∩ I2) = (0 + I1, 0 + I2). We have

φ(f + I1 ∩ I2) = (f + I1, f + I2) = (0 + I1, 0 + I2)

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 21

which means f ∈ I1 and f ∈ I2, so f ∈ I1 ∩ I2. This gives us

f + I1 ∩ I2 = 0 + I1 ∩ I2
from which we conclude that the kernel is zero, so φ is injective. Now it is easy to show
that ψ is surjective because for any f + (I1 + I2) ∈ R/(I1 + I2) we have (f + I1, 0 + I2) ∈
R/I1 ⊕R/I2 and

ψ(f + I1, 0 + I2) = f − 0 + (I1 + I2) = f + (I1 + I2).

We have image(φ) ⊂ ker(ψ) because for any f + I1 ∩ I2 ∈ R/(I1 ∩ I2) we have

ψ(φ(f + I1 ∩ I2)) = ψ(f + I1, f + I2) = (f − f) + (I1 + I2) = 0 + (I1 + I2).

To show ker(ψ) ⊂ image(φ), let ψ(f+I1, g+I2) = (f−g)+(I1 +I2) = 0+(I1 +I2). This
gives us f − g ∈ I1 + I2, so there is some h1 ∈ I1 and h2 ∈ I2 such that f − g = h1 + h2.
Now we get f − h1 = g + h2, so we let

h = f − h1 = g + h2.

This gives

φ(h) = (h+ I1, h+ I2) = (f − h1 + I1, g + h2 + I2).

Since h1 ∈ I1 and h2 ∈ I2, we have (f − h1 + I1, g+ h2 + I2) = (f + I1, g+ I2) which gives
(f + I1, g + I2) ∈ image(φ). Now we have ker(ψ) = image(φ) and we have proven the
claim.

Now we note that I(X) = I(Y) ∩ I({p}) = I1 ∩ I2 and that I1, I2, and I(X) are all
homogeneous ideals. This allows us to get that

0→ (R/I(X))i → (R/I1)i ⊕ (R/I2)i → (R/(I1 + I2))i → 0

is short exact for all i ≥ 0, due to the fact that the maps are of degree 0. This gives

dimk((R/I(X))i) = dimk((R/I1)i) + dimk((R/I2)i)− dimk((R/(I1 + I2))i) for all i ≥ 0.

Thus, we get

HFX(i) = HFY (i) +HF{p}(i)− dimk((R/(I1 + I2))i).

Now by Proposition 6.3.6 from [6], there must be a separator of p from Y = X \ I({p}).
That is, there must be some f ∈ I(Y) with f /∈ I({p}). Theorem 2.37 implies that
we can assume f + I({p}) ∈ R/I({p}) is written as a sum of non-zero monomials in
R/LT (I({p})), so LT (f) /∈ R/LT (I({p})). However, we have HFR/LT (I({p}))(i) = 1 for
all i ≥ 1, which means that for d = deg(f), we have

LT (I({p}))d + LT (f) = Rd.

This implies

Ri = LT (I({p}))i + 〈LT (f)〉i = LT (I({p}) + 〈LT (f)〉)i ⊂ LT (I1 + I2)i for all i ≥ d,

which gives us

dimk((R/I(X))i) = dimk((R/I1)i) + dimk((R/I2)i) for all i ≥ d.

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 22

Now set N = max{M,d}, and we have

dimk((R/I(X))i) = dimk((R/I1)i) + dimk((R/I2)i)

= dimk((R/I(Y))i) + dimk((R/I({p}))i)
= (s− 1) + 1

= s for all i ≥ N,

which completes the proof. �

2. The Buchberger-Möller Algorithm

If we are given a set X of finitely many points in Pn, we are able to compute the
reduced Groebner basis for I(X) ⊂ k[x0, . . . , xn] with the projective Buchberger-Möller
Algorithm. Here we present the algorithm, followed by a rough idea of how the algorithm
works. Then we finish with an example where we use the Buchberger-Möller algorithm
to compute the reduced Groebner basis of the defining ideal of a given set of points in
projective space.

Theorem 3.5. (Projective Buchberger-Möller Algorithm) For a fixed monomial order
on k[x0, . . . , xn], let X = {p1, . . . , ps} be a set of points in Pn, where each point pi is given
by pi = [ci0 : · · · : cin]. Consider the following sequence of instructions.

1) Let G = ∅, B = ∅, L = {1}, d = 0, and let M = (mij) be a matrix over k with s
columns and initially zero rows.

2) Compute the Hilbert function of S = k[x0, . . . , xn]/LT (G) (let LT (G) = 〈LT (g)|g ∈
G〉) and check whether HFS(i) = s for all i ≥ d. If this is true, return G and stop.
Otherwise, increase d by one, let B = ∅, let M = (mij) be a matrix over k with
s columns and zero rows, and let L be the set of all monomials in k[x0, . . . , xn]
of degree d which are not multiples of an element of LT (G).

3) If L = ∅, continue wth step 2). Otherwise, choose t = min(L) and remove it
from L.

4) For i = 1, . . . , s, compute t(pi) = t(ci0, . . . , cin). Reduce the vector (t(p1), . . . , t(ps))
against the rows of M to obtain

(v1, . . . , vs) = (t(p1), . . . , t(ps))−
∑
i

ai(mi1, . . . ,mis)

with ai ∈ k.
5) If (v1, . . . , vs) = (0, . . . , 0), then append the polynomial t−

∑
i aibi to G, where bi

is the ith element of the list B. Continue with step 3).
6) If (v1, . . . , vs) 6= (0, . . . , 0), then add (v1, . . . , vs) as a new row to M and t−

∑
i aibi

as a new element to B. Continue with step 3).

Proof. Let I = I(X) and suppose we stop with HFS(i) = s for all i ≥ d′ for some
d′. We have that G only contains elements of I since we are finding linear combinations
of monomials that produce the zero vector (that give 0 for each point of X). This means

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 23

we have 〈g | g ∈ G〉 ⊂ I, which implies LT (G) ⊂ LT (I). If we have LT (G) = LT (I), then
we have that the set G forms a Groebner basis for I, so suppose LT (G) (LT (I). Pick
xα ∈ LT (I) \ LT (G) of degree D > d′ so that we have LT (G) (LT (G) + xα ⊂ LT (I).
This gives us

HFR/LT (I)(i) ≤ HFR/(LT (G)+xα)(i) < HFR/LT (G)(i) = s = HFR/LT (I)(i) for all i ≥ D

which is a contradiction.

Now we prove that the algorithm eventually stops. First we note that if we are in
steps 4)-6), we must come back to step 3). Secondly, the set B is always finite, so we
only perform step 3) finitely many times before returning to step 2). For each degree d,
the set B forms a k-basis for (R/I)d because the additive abelian group generated by B
is everything in Ri that is not in LT (I). Theorem 3.4 gives us that for some N , we have
HFR/I(i) = s for all i ≥ N . Whenever d passes both the maximal degree of the minimal
generators of LT (I) and N , we will have

HFR/LT (G)(i) = HFR/LT (I)(i) = HFR/I(i) = s.

This will satisfy the condition of step 2), and the algorithm will stop. �

We give a rough idea of how the algorithm works, and a detailed worked out example
is given below. We know that a generator of I(X) must be a homogeneous polynomial,
so the idea is to use linear algebra to look for linear combinations of the monomials of
that degree that vanish over the points of X.

We start by looking for polynomials in I(X) that are of degree one, and we move up
from there until we have found a minimal generating set of I(X), which we will call G.
For each degree, we take L to be the set of all monomials of that degree that are not a
multiple of the leading term of any polynomial we have already found to be in G. This is
because we are looking for a minimal generating set, so we do not want to find a multiple
of a polynomial that we already know will be a generator I(X). For example, if we are
looking for degree two generators and have already found x1 − x2 to be a generator of
I(X), we can exclude from L any monomial that is a multiple of x1 to prevent us from
finding polynomials that are multiples of x1 − x2 (such as x21 − x1x2).

Once we create our set L of monomials, we start by evaluating the smallest monomial
(with respect to the fixed monomial order) of L at the points of X to obtain a vector of
length s (where s is the number of points in X). If the vector is non-zero, we add it as a
row to a matrix M that is initially empty, and we add the monomial that we evaluated
to the set B. Next, we take the new smallest monomial of L (after deleting the previous
one from L), and we evaluate it at the points of X, but now we reduce this vector against
the rows of M into either echelon form or reduced row echelon form. We can think of
the rows of M as polynomials that do not vanish over all of the points of X, which are
stored in the set B. If we find a linear combination of the rows of M that produce the
zero vector, then we can take the same linear combination of the polynomials in B that
each row represents to obtain a polynomial that vanishes over all of the points of X. We

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 24

then add this new polynomial to the set G. We continue evaluating the monomials in L
and reducing them over the rows of M until L is empty.

Once L is empty and there are no more linear combiations of the rows of M that
generate the zero vector, we know that our set G will generate every polynomial in I(X)
that is of our fixed degree. We then check if the Hilbert function has stabilized to deter-
mine if G is a generating set of all of I(X). If the Hilbert function has not stabilized, it
means that G does not generate all of I(X), so we must find more generators. We know
that any generators that we have not yet found will be of higher degree than our current
fixed degree, so we increase the degree by one and repeat the process for the new fixed
degree. We know this process must eventually stop because we are just looking for the
minimal generators of I(X). We know that there are finitely many of them, so there is
a maximum degree. Once we reach this maximum degree during the algorithm, then we
will have found all the minimal generators in I(X). After we have found these generators,
we know that the Hilbert function must stabilize at some positive integer N by Theorem
3.4. If we continue the process, d will eventually reach this integer N , at which point
the condition in step 2) is satisfied. This is when the algorithm stops, and the set G is
returned. This is the set of minimal generators of I(X) which form the reduced Groebner
basis of I(X).

Example 3.6. Let k = R and let X = {p1, . . . , p6} ⊂ P2, where p1 = [1 : 0 : 0],
p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : −1 : 0], p5 = [1 : 0 : −1], p6 = [0 : 1 : −1]. We will
use the projective Buchberger-Möller algorithm to compute the reduced Groebner bais of
I(X) under the graded reverse lexicographic order.

1) Let G = ∅, B = ∅, d = 0, and M ∈ Mat0,6(R).
2) We have HFS(d) = 1, so let B = ∅, d = 1, M ∈ Mat0,6(R), and L = {x0, x1, x2}.
3) Set t = x2 and let L = {x0, x1}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 1, 0,−1,−1) = (v1, . . . , v6).
6) Let M =

[
0 0 1 0 −1 −1

]
and B = {x2}.

3) Set t = x1 and let L = {x0}
4) Compute (t(p1), . . . , t(p6)) = (0, 1, 0,−1, 0, 1) = (v1, . . . , v6).

6) Let M =

[
0 0 1 0 −1 −1
0 1 0 −1 0 1

]
and B = {x2, x1}.

3) Set t = x0 and let L = ∅
4) Compute (t(p1), . . . , t(p6)) = (1, 0, 0, 1, 1, 0) = (v1, . . . , v6).

6) Let M =

0 0 1 0 −1 −1
0 1 0 −1 0 1
1 0 0 1 1 0

 and B = {x2, x1, x0}.

2) We have HFS(d) = 3, so let B = ∅, d = 2, M ∈ Mat0,6(R), and
L = {x20, x0x1, x21, x0x2, x1x2, x22}.

3) Set t = x22 and let L = {x20, x0x1, x21, x0x2, x1x2}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 1, 0, 1, 1) = (v1, . . . , v6).
6) Let M =

[
0 0 1 0 1 1

]
and B = {x22}.

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 25

3) Set t = x1x2 and let L = {x20, x0x1, x21, x0x2}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0, 0, 0,−1) = (v1, . . . , v6).

6) Let M =

[
0 0 1 0 1 1
0 0 0 0 0 −1

]
and B = {x22, x1x2}.

3) Set t = x0x2 and let L = {x20, x0x1, x21}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0, 0,−1, 0) = (v1, . . . , v6).

6) Let M =

0 0 1 0 1 1
0 0 0 0 0 −1
0 0 0 0 −1 0

 and B = {x22, x1x2, x0x2}.

3) Set t = x21 and let L = {x20, x0x1}.
4) Compute (t(p1), . . . , t(p6)) = (0, 1, 0, 1, 0, 1) and reduce it against the rows of M

to get (v1, . . . , v6) = (0, 1, 0, 1, 0, 0).

6) Let M =


0 0 1 0 1 1
0 0 0 0 0 −1
0 0 0 0 −1 0
0 1 0 1 0 0

 and B = {x22, x1x2, x0x2, x21 + x1x2}.

3) Set t = x0x1 and let L = {x20}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0,−1, 0, 0) = (v1, . . . , v6).

6) Let M =


0 0 1 0 1 1
0 0 0 0 0 −1
0 0 0 0 −1 0
0 1 0 1 0 0
0 0 0 −1 0 0

 and B = {x22, x1x2, x0x2, x21 + x1x2, x0x1}.

3) Set t = x20 and let L = ∅.
4) Compute (t(p1), . . . , t(p6)) = (1, 0, 0, 1, 1, 0) and reduce it against the rows of M

to get (v1, . . . , v6) = (1, 0, 0, 0, 0, 0).

6) Let M =



0 0 1 0 1 1
0 0 0 0 0 −1
0 0 0 0 −1 0
0 1 0 1 0 0
0 0 0 −1 0 0
1 0 0 0 0 0

 and

B = {x22, x1x2, x0x2, x21 + x1x2, x0x1, x
2
0 + x0x1 + x0x2}.

2) We have HFS(3) = 10, so let B = ∅, d = 3, M ∈ Mat0,6(R), and
L = {x30, x20x1, x0x21, x31, x20x2, x0x1x2, x21x2, x0x22, x1x22, x32}.

3) Set t = x32 and let L = {x30, x20x1, x0x21, x31, x20x2, x0x1x2, x21x2, x0x22, x1x22}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 1, 0,−1,−1) = (v1, . . . , v6).
6) Let M =

[
0 0 1 0 −1 −1

]
and B = {x32}.

3) Set t = x1x
2
2 and let L = {x30, x20x1, x0x21, x31, x20x2, x0x1x2, x21x2, x0x22}.

4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0, 0, 0, 1) = (v1, . . . , v6).

6) Let M =

[
0 0 1 0 −1 −1
0 0 0 0 0 1

]
and B = {x32, x1x22}.

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 26

3) Set t = x0x
2
2 and let L = {x30, x20x1, x0x21, x31, x20x2, x0x1x2, x21x2}.

4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0, 0, 1, 0) = (v1, . . . , v6).

6) Let M =

0 0 1 0 −1 −1
0 0 0 0 0 1
0 0 0 0 1 0

 and B = {x32, x1x22, x0x22}.

3) Set t = x21x2 and let L = {x30, x20x1, x0x21, x31, x20x2, x0x1x2}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0, 0, 0,−1) and reduce it against the rows of

M to get (v1, . . . , v6) = (0, 0, 0, 0, 0, 0).
5) Let G = {x21x2 + x1x

2
2}.

3) Set t = x0x1x2 and let L = {x30, x20x1, x0x21, x31, x20x2}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0, 0, 0, 0) = (v1, . . . , v6).
5) Let G = {x21x2 + x1x

2
2, x0x1x2}.

3) Set t = x20x2 and let L = {x30, x20x1, x0x21, x31}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0, 0,−1, 0) and reduce it against the rows of

M to get (v1, . . . , v6) = (0, 0, 0, 0, 0, 0).
5) Let G = {x21x2 + x1x

2
2, x0x1x2, x

2
0x2 + x0x

2
2}.

3) Set t = x31 and let L = {x30, x20x1, x0x21, x31}.
4) Compute (t(p1), . . . , t(p6)) = (0, 1, 0,−1, 0, 1) and reduce it against the rows of

M to get (v1, . . . , v6) = (0, 1, 0,−1, 0, 0). Let M =


0 0 1 0 −1 −1
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 −1 0 0

 and

B = {x32, x1x22, x0x22, x31 − x1x22}.
3) Set t = x0x

2
1 and let L = {x30, x20x1, x0x21, x31}.

4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0, 1, 0, 0) = (v1, . . . , v6).

Let M =


0 0 1 0 −1 −1
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 −1 0 0
0 0 0 1 0 0

 and B = {x32, x1x22, x0x22, x31 − x1x22, x0x21}.

3) Set t = x20x1 and let L = {x30, x20x1, x0x21, x31}.
4) Compute (t(p1), . . . , t(p6)) = (0, 0, 0,−1, 0, 0) and reduce it against the rows of

M to get (v1, . . . , v6) = (0, 0, 0, 0, 0, 0). Let G = {x21x2 + x1x
2
2, x0x1x2, x

2
0x2 +

x0x
2
2, x

2
0x1 + x0x

2
1}.

3) Set t = x30 and let L = {x30, x20x1, x0x21, x31}.

Chapter 3. Buchberger-Moeller Algorithm for points in Pn 27

4) Compute (t(p1), . . . , t(p6)) = (1, 0, 0, 1, 1, 0) and reduce it against the rows of

M to get (v1, . . . , v6) = (1, 0, 0, 0, 0, 0). Let M =



0 0 1 0 −1 −1
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 −1 0 0
0 0 0 1 0 0
1 0 0 0 0 0

 and

B = {x32, x1x22, x0x22, x31 − x1x22, x0x21, x30 − x0x21 − x0x22}.
2) We have LT (G) = 〈x21x2, x0x1x2, x20x2, x20x1〉 and for all i ≥ 3 we have

HFk[x0,x1,x2]/〈x21x2,x0x1x2,x20x2,x20x1〉(i) = 6.

At this point we stop and we get that

G = 〈x21x2 + x1x
2
2, x0x1x2, x

2
0x2 + x0x

2
2, x

2
0x1 + x0x

2
1〉

is the reduced Groebner basis for I(X) under the graded reverse lexicographic
order.

CHAPTER 4

Points in P1 × P1

Throughout the rest of this project we will be working in the product space P1 × P1.
Here we will present the necessary background information for points in P1 × P1 which
will be needed in the next chapter. The ideas and notation used in this chapter follow
that of E. Guardo and A. Van Tuyl in [4].

1. Points and biprojective space

We begin by defining the biprojective space P1 × P1.

Definition 4.1. The biprojective space P1 × P1 is defined as the set of equivalence
classes of (k2 \ {0})× (k2 \ {0}) with respect to the relation ∼, where

(a1, a2)× (b1, b2) ∼ (a′1, a
′
2)× (b′1, b

′
2)

if (a1, a2) = (λ1a
′
1, λ1a

′
2) and (b1, b2) = (λ2b

′
1, λ2b

′
2) for some nonzero λ1, λ2 ∈ k.

If (a1, a2)×(b1, b2) ∈ (k2\{0})×(k2\{0}), then the equivalence class of (a1, a2)×(b1, b2)
is called a point in P1 × P1, denoted [a1 : a2]× [b1 : b2].

Alternatively, we could have just defined P1 × P1 as the cartesian product of P1 with
itself.

We define π1 : P1× P1 → P1 and π2 : P1× P1 → P1 to be the natural projection maps
onto the first and second coordinates, respectively. Since we are working in a product
space, it is natural to think of the space as a plane with P1 on each axis. This way, we
can think of any finite set of points X ⊂ P1 × P1 to be on a grid where the horizontal
and vertical rulings are labelled by π1(X) and π2(X), respectively. Although we are using
an orientation that may seem reversed to what we normally would expect, the purpose
is to coincide with matrix notation and the notation of a Ferrers diagram, which we will
introduce shortly.

Suppose X ⊂ P1×P1 is a finite set of points and suppose π1(X) = {A1, . . . , Ah} ⊂ P1

and π2(X) = {B1, . . . , Bv} ⊂ P1. To view X on a grid, we label the horizontal rulings of
the grid as HA1 , . . . , HAh , where HAi = {Ai × B | B ∈ P1} ⊂ P1 × P1, and we label the
vertical rulings VB1 , . . . , VBh , where VBj = {A×Bj |A ∈ P1} ⊂ P1×P1. This way, a point
Ai × Bj ∈ X ⊂ P1 × P1 is the intersection of HAi and VBj , so it will appear on the grid
where the the lines HAi and VBj intersect.

28

Chapter 4. Points in P1 × P1 29

Example 4.2. Let

X = {A1 ×B1, A1 ×B3,

A2 ×B2, A2 ×B3,

A3 ×B1, A3 ×B2, A3 ×B4,

A4 ×B2, A4 ×B4}
where Ai and Bj are points in P1 for all i, j = 1, 2, 3, 4. We can represent X as points on
a grid as in the following image.

HA4

HA3

HA2

HA1

VB1 VB2 VB3 VB4t t
t t

t t t
t t

Now we note that with appropriate relabeling, we can interchange the columns and
rows of such a grid without changing what the grid represents. This means that for any
finite set X ⊂ P1 × P1, we can label the points such that |X ∩HA1| ≥ |X ∩HA2| ≥ · · ·
and |X ∩ VB1| ≥ |X ∩ VB2| ≥ · · · .

Example 4.3. For the set X given in Example 4.2, we can relabel its points to get
the grid representation in the following image.

HA4

HA3

HA2

HA1

VB1 VB2 VB3 VB4t t t
t t
t t

t t
Now with this relabeling, we have that this grid representation of X satisfies |X ∩

HA1| ≥ |X ∩HA2| ≥ · · · and |X ∩ VB1| ≥ |X ∩ VB2| ≥ · · · .

Throughout the rest of this project, we will assume that any given finite set X ⊂
P1 × P1 with π1(X) = {A1, . . . , Ah} ⊂ P1 and π2(X) = {B1, . . . , Bv} ⊂ P1 will satisfy
|X ∩HA1 | ≥ |X ∩HA2| ≥ · · · and |X ∩ VB1| ≥ |X ∩ VB2| ≥ · · · .

Definition 4.4. LetX be a finite set of points in P1×P1 with π1(X) = {A1, . . . , Ah} ⊂
P1 and π2(X) = {B1, . . . , Bv} ⊂ P1. We define αX = (α1, . . . , αh) and βX = (β1, . . . , βv)
where

αi = |X ∩HAi |

Chapter 4. Points in P1 × P1 30

and
βj = |X ∩ VBj |.

Also, if we have αX = (α1, . . . , αh) for some set X, then we will use the convention that
αh+1 = 0.

Example 4.5. For the set X used in Examples 4.2 and 4.3, we will compute αX and
βX . We can start by noting that h = 4 and v = 4, so αX and βX will each have length 4.
Now we directly compute each αi:

α1 = |X ∩HA1| = 3

α2 = |X ∩HA2| = 2

α3 = |X ∩HA3| = 2

α4 = |X ∩HA4| = 2.

This gives αX = (3, 2, 2, 2). Similarly, we get the βj by computing

β1 = |X ∩ VB1| = 3

β2 = |X ∩ VB2| = 2

β3 = |X ∩ VB3| = 2

β4 = |X ∩ VB4| = 2

which gives βX = (3, 2, 2, 2).

For any finite set of points X ⊂ P1× P1, we have that both αX and βX are partitions
of |X|.

Definition 4.6. If s ∈ N and v = (v1, . . . , vr) is such that each vi is a positive integer
with vi ≥ vi+1 and

∑r
i=1 vi = s, then we say v is a partition of s. If v is a partition of an

integer s, then the conjugate of v is defined as

v∗ = (v∗1, . . . , v
∗
v1

)

where v∗i = |{vj | vj ≥ i}|. The conjugate v∗ is also a partition of s.

If we have that v = (v1, . . . , vr) is a partition of some integer s, then its conjugate
necessarily has length v1. This can be seen from the fact that we have

v∗v1 = |{vj | vj ≥ v1}| ≥ |{v1}| > 0

and for any i > v1 we have

v∗i = |{vj | vj ≥ i}| = |∅| = 0.

Note that for any finite set of points X ⊂ P1 × P1, both α∗X and β∗X are partitions of
|X|, because αX and βX both are.

Definition 4.7. Let v = (v1, . . . , vr) be a partition of some integer s. The Ferrers
diagram of v is a r× v1 grid with vi left justified points on the ith horizontal line from the
top.

Chapter 4. Points in P1 × P1 31

Example 4.8. We have that (3, 3, 2, 2) is a partition of 10. The Ferrers diagram of
(3, 3, 2, 2) is r r rr r rr rr r

Now consider (5, 5, 4, 3, 1), which is a partition of 18. The Ferrers diagram of (5, 5, 4, 3, 1)
is r r r r rr r r r rr r r rr r rr

Note that we can easily obtain the conjugate of a partition from its Ferrers diagram
by counting the number of points in each column.

We now define a condition for a finite set of points in P1 × P1 to be Arithmetically
Cohen-Macaulay. Although this is an algebraic property, the definition we give is consis-
tent with other common definitions of Arithmetically Cohen-Macaulay (refer to Definition
2.20 and Theorem 4.11 in [4] for more information on the Arithmetically Cohen-Macaulay
property). The reason we define the property this way is to give a useful criterion for
classifying finite sets of points in P1 × P1 as Arithmetically Cohen-Macaulay or not.

Definition 4.9. Let X be a finite set of points in P1×P1 with αX = (α1, . . . , αh) and
βX = (β1, . . . , βv). We say that X is Arithmetically Cohen-Macaulay (ACM) if α∗X = βX
(and consequently β∗X = αX).

An equivalent definition for X to be ACM, is that the grid representation of X must
resemble a Ferrers diagram. In this case, the grid representation for X will be unique,
and it will resemble the Ferrers diagram of αX .

Example 4.10. For the set X used in Examples 4.2, 4.3, and 4.5, we have αX =
(3, 2, 2, 2) and βX = (3, 2, 2, 2). We compute α∗X = (4, 4, 1), and we get that X is not
ACM because α∗X 6= βX . The fact that X is not ACM can also be seen from the fact that
the grid representation of X given in Example 4.3 does not resemble a Ferrers diagram.

Example 4.11. For this example, let

X = {A1 ×B1, A1 ×B2, A1 ×B3, A1 ×B4,

A2 ×B1, A2 ×B2, A2 ×B3,

A3 ×B1, A3 ×B2, A3 ×B3,

A4 ×B1, A4 ×B2}.

Chapter 4. Points in P1 × P1 32

We will check if X is ACM. We start by finding αX = (4, 3, 3, 2) and βX = (4, 4, 3, 1). We
compute α∗X = (4, 4, 3, 1), which gives α∗X = βX . From this, we can conclude that X is
ACM.

The unique grid representation of X is given below, which resembles a Ferrers diagram.

HA4

HA3

HA2

HA1

VB1 VB2 VB3 VB4t t t t
t t t
t t t
t t

Since the grid representation of X resembles a Ferrers diagram, we can see that X is
ACM. Also, we can easily compute the conjugate of αX from this diagram by counting the
number of points in each column. Thus, the fact that α∗X = βX for an ACM set of points
is a consequence of the fact that the grid representation resembles a Ferrers diagram.

2. Algebra of points in P1 × P1

If we are given a finite set of points in P1 × P1, we may be interested in finding the
ideal of polynomials that vanish over each point. In the product space, we have four
coordinates to consider, so we will look for polynomials in the polynomial ring with four
variables, which we call x0, x1, y0, and y1. We must also recall that we are in projective
space and so any polynomials that are zero over a set of points in P1 × P1 must also
be zero when we multiply x0 and x1 by any scalar and/or multiply y0 and y1 by any
scalar. This implies that any such polynomial must not only be homogeneous, but also
bihomogeneous.

Definition 4.12. A bihomogenous polynomial in k[x0, x1, y0, y1] is a homogeneous
polynomial f(x0, x1, y0, y1) such that both f(x0, x1, 1, 1) and f(1, 1, y0, y1) are homoge-
neous (of possibly different degrees) and deg(f(x0, x1, y0, y1)) = deg(f(x0, x1, 1, 1)) +
deg(f(1, 1, y0, y1)). If f(x0, x1, y0, y1) is bihomogeneous with f(x0, x1, 1, 1) homogeneous
of degree d1 and f(1, 1, y0, y1) homogeneous of degree d2, then we say f is bihomogeneous
of degree (d1, d2).

Example 4.13. Consider f = x20y
3
0+x0x1y

2
0y1+x21y0y

2
1 which is homogeneous of degree

5. We have f(x0, x1, 1, 1) = x20 + x0x1 + x21 is homogeneous of degree 2, f(1, 1, y0, y1) =
y30 +y20y1+y0y

2
1 is homogeneous of degree 3, and deg(f) = 5 = 2+3 so f is bihomogeneous

of degree (2, 3).

To tell if a given polynomial is bihomogenous, we just need that each of its monomials
must be bigraded of the same degree.

Definition 4.14. A bigraded ring is a ring that is a direct sum of abelian groups R(i,j)

such that R(i1,j1)R(i2,j2) ⊂ R(i1+i2,j1+j2).

Chapter 4. Points in P1 × P1 33

Example 4.15. We have that k[x0, x1, y0, y1] with deg x0 = deg x1 = (1, 0), and
deg y0 = deg y1 = (0, 1) is a bigraded ring where k[x0, x1, y0, y1](i,j) is the additive abelian
group generated by all monomials of bidegree (i, j). This is because any polynomial in
k[x0, x1, y0, y1] can be written as the direct sum of bihomogeneous polynomials that are
all of different bidegrees (by grouping all the monomials into their respective bidegrees).
Now each of these bihomogeneous polynomials are a sum of monomials of a fixed bidegree,
so belong to k[x0, x1, y0, y1](i,j) for some i and j. From this we conclude that

k[x0, x1, y0, y1] =
⊕

(i,j)∈N2

k[x0, x1, y0, y1](i,j).

It is easy to see that k[x0, x1, y0, y1](i1,j1)k[x0, x1, y0, y1](i2,j2) ⊂ k[x0, x1, y0, y1](i1+i2,j1+j2)
because the product of any two monomials of bigrees (i1, j1) and (i2, j2) will have bidegree
(i1 + i2, j1 + j2). This implies that the product of any two bihomogeneous polynomials of
bigrees (i1, j1) and (i2, j2) will have bidegree (i1 + i2, j1 + j2) so we have the containment
property needed to be a bigraded ring.

Definition 4.16. A bihomogeneous ideal is an ideal generated by bihomogeneous
polynomials.

Lemma 4.17. A bihomogeneous ideal is a bigraded ring.

Proof. The proof of this lemma is similar to the proof given in Chapter 3 that a
homogeneous ideal is a graded ring. The idea is that if I is a bihomogeneous ideal, we
let I(i,j) be the additive abelian group of all bihomogenous polynomials in I of bidegree
(i, j). This gives us

I =
⊕

(i,j)∈N2

I(i,j).

We also have that I(i1,j1)I(i2,j2) ⊂ I(i1+i2,j1+j2) because the product of two bihomogeneous
polynomials in I of degrees (i1, j1) and (i2, j2) must be in I and of bidegree (i1 + i2, j1 +
j2). �

Now we define the defining ideal for a set of points in P1 × P1.

Definition 4.18. Let X = {p1, . . . , pr} be a set of points in P1 × P1. The biho-
mogeneous vanishing ideal of X (or the defining ideal of X), denoted I(X), is defined
as

I(X) = 〈f ∈ k[x0, x1, y0, y1] | f is bihomogeneous and f(pi) = 0 for all pi ∈ X〉.

Note that if f is bihomogeneous of bidegree (d1, d2) and f(a1, a2, b1, b2) = 0, where
p = [a1 : a2]× [b1 : b2] is a point in P1 × P1, we have that

f(p) = f(λ1a1, λ1a2, λ2b1, λ2b2) = λd11 λ
d2
2 f(a1, a2, b1, b2) = 0

for any λ1, λ2 ∈ k. This means that a point in P1 × P1 is a zero of a bihomogeneous
polynomial if any one of its coordinate representations is a zero.

Chapter 4. Points in P1 × P1 34

We know that the defining ideal of a finite set of points in P1 × P1 is generated by
bihomogeneous polynomials in k[x0, x1, y0, y1], so it is a bihomogeneous ideal and hence a
bigraded ring. This means we can look at the Hilbert function of a finite set of points in
terms of the bigrading of its defining ideal.

Definition 4.19. Let X be a set of points in P1×P1 and let I be the bihomogeneous
ideal I(X). The bigraded Hilbert function of X is defined as a matrix (HFX(i, j)) where
HFX(i, j) is defined as

HFX(i, j) = dimk(k[x0, x1, y0, y1](i,j))− dimk(I(i,j)).

For any finite set of points in P1 × P1 X, we can determine a significant part of its
Hilbert function from αX and βX .

Theorem 4.20. Let X be a set of s points in P1 × P1 with αX = (α1, . . . , αh) and
βX = (β1, . . . , βv). For all 1 ≤ i ≤ α1 and 1 ≤ j ≤ β1, let

ai =
i∑
l=1

α∗l and bj =

j∑
l=1

β∗l

where α∗X = (α∗1, . . . , α
∗
α1

) and β∗X = (β∗1 , . . . , β
∗
β1

). Let ai = s for i > α1 and bj = s for
j > β1. We have

(HFX(i, j)) =



1 2 · · · v − 1 b1 b1 · · ·
2 b2 b2 · · ·
...

...
h− 1 bh−1 bh−1 · · ·
a1 a2 · · · av−1 s s · · ·
a1 a2 · · · av−1 s s · · ·
...

... . . .
...

...
...

. . .


.

Proof. This theorem is identical to Corollary 3.30 in [4]. We get the first column
and the top row directly from Theorem 3.27 (i) and (ii) in [4], which states that these
entries are the same as the Hilbert functions of π1(X) and π2(X). Lemma 3.25 in [4]
gives us these values. Everything else is deduced from Theorem 3.29 in [4], which gives
us HFX(i, j) = aj+1 for all i ≥ h− 1 and HFX(i, j) = bi+1 for all j ≥ v − 1. We also use

the fact that we have s =
∑v

i=1 α
∗
i =

∑h
i=1 β

∗
i because α∗X and β∗X are partitions of s. �

Example 4.21. For the set X used in Examples 4.2, 4.3, 4.5, and 4.10, we have
αX = (3, 2, 2, 2), βX = (3, 2, 2, 2), α∗X = (4, 4, 1), and we compute β∗X = (4, 4, 1). From
these, we compute a1 = 4, a2 = 8, and ai = 9 for all i ≥ 3, and b1 = 4, b2 = 8, and bj = 9

Chapter 4. Points in P1 × P1 35

for all j ≥ 3. This gives

(HFX(i, j)) =



1 2 3 4 4 · · ·
2 8 8 · · ·
3 9 9 · · ·
4 8 9 9 9 · · ·
4 8 9 9 9 · · ·
...

...
...

...
...

. . .


.

The previous theorem is the basis for the stopping criterion in the new Buchberger-
Moeller algorithm for P1 × P1 given in the next chapter.

3. The Universal Groebner basis for the defining ideal of an ACM set of
points

If we know that a finite set of points in P1 × P1 is ACM, then we do not need an
algorithm to find its defining ideal. We start with two theorems that are used to prove
Theorem 4.24, which gives us the Universal Groebner basis of the defining ideal of an
ACM set of points in P1×P1. These theorems are identical to Theorem 4.9 and Corollary
5.6 given by E. Guardo and A. Van Tuyl in [4].

For the remainder of this report, we will use the notation that was used by E. Guardo
and A. Van Tuyl in [4], where HA denotes both the horizontal ruling as well as the
bihomogeneous polynomial of bidegree (1, 0) that vanishes over HA. Similarly, VB will
denote both the vertical ruling and the bihomogeneous polynomial of bidegree (0, 1) that
vanishes over VB. We can assume that the coefficients of the leading terms of each of these
polynomials is one. We will also adopt the convention that

∏b
i=a pi = 1 for any product

of polynomials if b < a.

The following theorem is identical to E. Guardo and A. Van Tuyl’s Theorem 4.9 in
[4]. We will use this result to prove Theorem 4.24, which gives us the Universal Groebner
basis for the defining ideal of an ACM set of points in P1 × P1.

Theorem 4.22. Let X be a finte set of points in P1 × P1 with αX = (α1, . . . , αh) and
βX = (β1, . . . , βv). Let H be a degree (1,0) line that contains α1 points of X, Y = X ∩H,
and Z = X \ Y . If π2(Z) ⊂ π2(Y), then

I(X) = H · I(Z) +

α1∏
i=1

VBi .

We do not give a proof here, but there is one given by E. Guardo and A. Van Tuyl in
[4] under Theorem 4.9.

This next theorem, identical to Corollary 5.6 given by E. Guardo and A. Van Tuyl in
[4], gives us a minimal set of generators for the defining ideal of a given ACM set of points
in P1 × P1. We prove that this set of generators forms the Universal Groebner basis in
the theorem that follows.

Chapter 4. Points in P1 × P1 36

Theorem 4.23. Let X be an ACM set of points in P1×P1 with π1(X) = {A1, . . . , Ah},
π2(X) = {B1, . . . , Bv}, and αX = (α1, . . . , αh). A minimal bihomogeneous set of genera-
tors of I(X) is given by{

j∏
i=1

HAi

αj+1∏
i=1

VBi

∣∣∣∣∣ αj+1 − αj < 0 or j = 0

}
.

We refer the reader to Corollary 5.6 in [4] for a proof of this theorem.

We will now prove that the generators in Theorem 4.23 form the Universal Groebner
basis for the defining ideal of X.

Theorem 4.24. Let X be a set of s points in P1 × P1 that is ACM with αX =
(α1, . . . , αh). The minimal set of generators of I(X) given in Theorem 4.23 forms the
Universal Groebner basis for I(X).

Proof. Fix any monomial order, and let Xk = (
⋃h
i=kHAi) ∩ X and Ik = I(Xk).

In other words, we have defined Xk to be the set of points of the bottom h − k + 1
rows of the grid representation of X, which resembles a Ferrers diagram. Note that
Xh ⊂ Xh−1 ⊂ · · · ⊂ X1 = X, and all are ACM since each of their grid representations
will resemble a Ferrers diagram. We have αXk = (αk, . . . , αh). Now we want to apply
Theorem 4.22 on Xk. The first entry of αXk is αk, so we need the degree (1, 0) line that
contains αk points of Xk. We have that HAk ⊃ HAk ∩Xk = HAk ∩X and |HAk ∩X| = αk
which means that HAk is the degree (1, 0) line that contains αk points of Xk. Since Xk

is ACM for each k, we also have Xk ⊂
⋃αk
i=1 VBi for each k. Now let Yk = Xk ∩HAk and

Zk = Xk \ Yk. We have

Zk = Xk \ Yk

=

[(
h⋃
i=k

HAi

)
∩X

]
\ (Xk ∩HAk)

=

[(
h⋃
i=k

HAi

)
∩X

]
\ (X ∩HAk)

=

(
h⋃

i=k+1

HAi

)
∩X

= Xk+1.

Now we note that

π2(Yk) = {B1, B2, . . . , Bαk} = π2(Xk)

and we have

π2(Zk) = π2(Xk+1) = {B1, B2, . . . , Bαk+1
} ⊂ {B1, B2, . . . , Bαk} = π2(Yk)

since αk+1 ≤ αk. Now by Theorem 4.22, putting everything together gives us

Chapter 4. Points in P1 × P1 37

Ik = HAkIk+1 +

αk∏
i=1

VBi .

We start with

Ih = 〈HAh , VB1 · · ·VBαh 〉 =

〈
m∏
i=h

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ h− 1 ≤ m ≤ h

〉
,

and we have

Ih−1 = HAh−1
Ih +

αh−1∏
i=1

VBi

= 〈HAh−1
HAh , HAh−1

VB1 · · ·VBαh , VB1 · · ·VBαh−1
〉

=

〈
m∏

i=h−1

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ h− 2 ≤ m ≤ h

〉
.

Now if we let

Ik+1 =

〈
m∏

i=k+1

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k ≤ m ≤ h

〉
,

we have

Ik = HAkIk+1 +

αk∏
i=1

VBi

=

〈
m∏
i=k

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k ≤ m ≤ h

〉
+

αk∏
i=1

VBi

=

〈
m∏
i=k

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k − 1 ≤ m ≤ h

〉
.

We will now prove by descending induction that {
∏m

i=kHAi

∏αm+1

i=1 VBi | k − 1 ≤ m ≤ h}
is a Groebner basis for Ik for 1 ≤ k ≤ h. The desired conclusion then follows from the
fact that I(X) = I(X1) = I1.

We have that {HAh , VB1 · · ·VBαh} is a generating set for Ih = I(Xh) since Xh is a finite
set of points on the line HAh . The two generators are in different variables, so it follows
from Theorem 2.30 that they form a Groebner basis for Ih for any monomial order. Now
we will fix k and assume that{

m∏
i=k+1

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k ≤ m ≤ h

}

Chapter 4. Points in P1 × P1 38

is a Groebner basis for Ik+1. We will use this to show that Ik = HAkIk+1 +
∏αk

i=1 VBi gives
a Groebner basis for Ik. From the assumption, Theorem 2.20 gives us that{

m∏
i=k

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k ≤ m ≤ h

}
is a Groebner basis for HAkIk+1. This means that any S-polynomial formed from two of
theses generators gives a remainder of 0 after applying the division algorithm over{

m∏
i=k

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k ≤ m ≤ h

}
,

which also means that we get a remainder of 0 after applying the division algorithm to
these S-polynomials over {

∏m
i=kHAi

∏αm+1

i=1 VBi | k − 1 ≤ m ≤ h} (we can do the same
process to reach 0 remainder).

It remains to show that any S-polynomial formed from
∏αk

i=1 VBi and one of
{
∏m

i=kHAi

∏αm+1

i=1 VBi |k ≤ m ≤ h} gives 0 remainder after applying the division algorithm
over {

m∏
i=k

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k − 1 ≤ m ≤ h

}
.

Let G =
∏αk

i=1 VBi and let fm =
∏m

i=kHAi

∏αm+1

i=1 VBi for each m with k ≤ m ≤ h.

First, we fix m with k ≤ m ≤ h and look at the polynomials

αk∏
i=αm+1+1

VBi and
m∏
i=k

HAi .

These are polynomials in separate variables, so by Theorem 2.30, we know that their
S-polynomial will give a remainder of 0 after applying the division algorithm over

αk∏
i=αm+1+1

VBi ,
m∏
i=k

HAi

 .

This means that 
αk∏

i=αm+1+1

VBi ,

m∏
i=k

HAi


forms a Groebner basis for 〈

αk∏
i=αm+1+1

VBi ,
m∏
i=k

HAi

〉
.

By Theorem 2.20, we have that

{G, fm} =

{
αk∏
i=1

VBi ,
m∏
i=k

HAi

αm+1∏
i=1

VBi

}

Chapter 4. Points in P1 × P1 39

forms a Groebner basis for(
αm+1∏
i=1

VBi

)〈
αk∏

i=αm+1+1

VBi ,
m∏
i=k

HAi

〉
= 〈G, fm〉.

Buchberger’s criterion implies that we get a remainder of 0 after applying the division
algorithm to the S-polynomial formed from G and fm over {G, fm}, which means that we
must also get a remainder of 0 after applying the division algorithm over{

m∏
i=k

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k − 1 ≤ m ≤ h

}
because {G, fm} is a subset. Since the choice of m was arbitrary, we have that{

m∏
i=k

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k − 1 ≤ m ≤ h

}
satisfies Buchberger’s criterion, so is a Groebner basis for

Ik =

〈
m∏
i=k

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ k − 1 ≤ m ≤ h

〉
.

Now we have that {
m∏
i=1

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ 0 ≤ m ≤ h

}
is a Groebner basis for

I(X) = I1 =

〈
m∏
i=1

HAi

αm+1∏
i=1

VBi

∣∣∣∣∣ 0 ≤ m ≤ h

〉
.

The minimal set of generators of I(X) given in Theorem 4.23 must also satisfy Buch-
berger’s criterion since the S-polynomial formed from two of the generators give a re-
mainder of 0 after applying the division algorithm over any set containing the two chosen
generators. Since they also generate the same ideal I(X), we have that they form a
Groebner basis for I(X). Finally, it is impossible for a monomial appearing in one gen-
erator to divide a monomial appearing in any of the other generators due to it having a
higher degree in either the xi variables or the yi variables. This means that they form the
reduced Groebner basis for I(X). Since we can obtain this result for any monomial order,
we have that this set of generators forms the Universal Groebner basis for I(X). �

Now if a given set of points in P1 × P1 is ACM, we can easily obtain the Universal
Groebner basis for its defining ideal. However, it may be the case that our given set of
points is not ACM. In the next chapter we develop a Buchberger-Moeller algorithm for
points in P1 × P1 to deal with these cases.

CHAPTER 5

Buchberger-Moeller Algorithm for P1 × P1

The Buchberger-Moeller algorithm for P1 × P1 is the final result of this project. Ev-
erything we have learned about Groebner bases, Hilbert functions, and points in P1 × P1

brings us to this. We can now prove that the Buchberger Moeller algorithm for Pn can
be extended to compute the reduced Groebner basis for the defining ideal of a finite set
of points in P1 × P1.

1. Buchberger-Moeller Algorithm for P1 × P1

Although we already have a reduced Groebner basis for the defining ideal of a given
ACM set of points in P1 × P1 given in Theoerem 4.24, this modified algorithm will give
us the same result for a set of points that is not ACM. Using the background of Chapter
4, we are able to present the Buchberger-Moeller Algorithm for P1 × P1.

Theorem 5.1. (Buchberger-Möller Algorithm for P1×P1) For a fixed monomial order
on k[x0, x1, y0, y1], let X = {p1, . . . , ps} be a set of points in P1×P1 with αX = (α1, . . . , αh)

and βX = (β1, . . . , βv), where each point pi is given by pi = [c
(1)
i0 : c

(1)
i1] × [c

(2)
i0 : c

(2)
i1]. For

each 1 ≤ i ≤ α1 and 1 ≤ j ≤ β1, let

ai =
i∑
l=1

α∗l and bj =

j∑
l=1

β∗l

where α∗X = (α∗1, . . . , α
∗
α1

) and β∗X = (β∗1 , . . . , β
∗
β1

) with ai = s for i ≥ α1 and bj = s for
j ≥ β1. Consider the following sequence of instructions.

1) Let G = ∅, B = ∅, (d1, d2) = (0, 0), and let M = (mij) be a matrix over k with s
columns and initially zero rows.

2) Compute the Hilbert function of S = k[x0, x1, y0, y1]/LT (G) and check whether
HFS(i, j) = bi+1 for all i ≥ 0 and j ≥ d2. If this is true, return G and stop.
Otherwise, proceed with step 3).

3) Check if HFS(i, d2) = ad2+1 for all i ≥ d1. If this is true, then increase d2 by one
and let d1 = 0. Otherwise, just increase d1 by one. Let B = ∅, let M = (mij)
be a matrix over k with s columns and zero rows, and let L be the set of all
monomials in k[x0, x1, y0, y1] of bidegree (d1, d2) which are not multiples of an
element of LT (G).

4) If L = ∅, continue wth step 2). Otherwise, choose t = min(L) and remove it
from L.

40

Chapter 5. Buchberger-Moeller Algorithm for P1 × P1 41

5) For i = 1, . . . , s, compute t(pi) = t(c
(1)
i0 , c

(1)
i1 , c

(2)
i0 , c

(2)
i1). Reduce the vector (t(p1), . . . , t(ps))

against the rows of M to obtain

(v1, . . . , vs) = (t(p1), . . . , t(ps))−
∑
i

ai(mi1, . . . ,mis)

with ai ∈ k.
6) If (v1, . . . , vs) = (0, . . . , 0), then append the polynomial t−

∑
i aibi to G, where bi

is the ith element of the list B. Continue with step 4).
7) If (v1, . . . , vs) 6= (0, . . . , 0), then add (v1, . . . , vs) as a new row to M and t−

∑
i aibi

as a new element to B. Continue with step 4).

Proof. The proof will use the same ideas from the proof of the Buchberger-Moeller
algorithm for Pn, Theorem 3.5. Let I = I(X) and suppose we stop with HFS(i, j) =
bi+1 for all i ≥ 0 and j ≥ d′2 on some bidegree (d′1, d

′
2). Just as in the Buchberger-

Moeller algorithm for Pn, we have that anything in G must also be in I(X). Again,
this implies LT (G) ⊂ LT (I). To prove that the set G forms a Groebner basis for I,
suppose LT (G) (LT (I) and we will get a contradiction as before. Pick a monomial
xαyβ ∈ LT (I) \ LT (G) of bidegree (D1, D2) with D1 ≥ 0 and D2 ≥ d′2. This gives us
LT (G) (LT (G) + 〈xαyβ〉 ⊂ LT (I), so we have

HFR/LT (I)(D1, D2) ≤ HFR/(LT (G)+〈xαyβ〉)(D1, D2)

< HFR/LT (G)(D1, D2)

= bD1+1

= HFR/LT (I)(D1, D2)

where R = k[x0, x1, y0, y1], which is a contradiction.

To see that we get the reduced Groebner basis of I, note that if a monomial appearing
in L, xαyβ, is found to be in LT (G), then no multiples of it will appear in L again. Also
note that it is not stored in the set B. Since the elements of G are formed from the
elements of L and B, we know that xαyβ will not be used to form another element of G
since it is in neither L or B. Finally, we have that xαyβ does not divide any monomials
appearing in any element of G previously found because of the bidegrees.

Now we prove that the algorithm stops after finitely many steps. Just as with the
Buchberger-Moeller algorithm for Pn, if we enter any of steps 3),5),6), or 7), we must
come back to step 4). We perform step 4) finitely many times before returning to step 2)
because the set L is always finite. Step 1) is the set up step and is only done once, so we
just need to show that step 2) is done finitely many times.

Each time we finish step 2), we enter step 3) and change the bidegree (d1, d2) to be a
bidegree that we have not yet looked at. This is the only time we change our bidegree,
so this means we have a unique bidegree for each time we enter step 2). Now we can
prove step 2) is done finitely many times by proving that we only consider finitely many

Chapter 5. Buchberger-Moeller Algorithm for P1 × P1 42

bidegrees. This will be done by showing that we only consider finitely many d2 values,
and for each fixed d2, we look at finitely many values for d1.

Note that after looking for minimal generators of I(X) of bidegree (d1, d2), we will
necessarily have already found all minimal generators of I(X) of bidegree (i, j) with
i ≤ d1 and j ≤ d2. Now for each fixed d2, consider the minimal generators of I(X) of
bidegree (i, d2) for some i, and let Md2 be the maximal such i value. Now if we continue to
increase d1 and eventually reach a point where we look for generators of bidegree (Md2 , d2),
then we will have found all minimal generators of I of bidegree (i, d2) for each i and of
bidegree (i, j) for all i ≤ Md2 and j ≤ d2. With these generators in the set G, we have
HFS(i, d2) = HX(i, d2) for all i ≥Md2 . By Theorem 4.20, we have that HX(i, d2) = ad2+1

for all i ≥ h− 1. Together, this gives us that for all i ≥ max{Md2 , h− 1}, we have

HFS(i, d2) = HX(i, d2) = ad2+1.

Now for d1 = max{Md2 , h− 1}, the criterion in step 3) is satisfied and allows us to move
on to the next d2 value.

Now we need to prove that we only consider finitely many d2 values for the bidegrees
(d1, d2). There are finitely many minimal generators of I, so there must exist some number
N such that for any bidegree (i, j) of a minimal generator of I, we have j ≤ N . That is,
there are no minimal generators of I of bidegree (i, j) with j > N for N large enough. This
implies that if we increase d2 toN , then after increasing d1 tomax{MN , h−1}, we will have
found all generators of I. This gives HFS(i, j) = HX(i, j) for all i ≥ d1 = max{MN , h−1}
and j ≥ d2 = N . We have HX(i, j) = s for all i ≥ h− 1 and j ≥ v − 1 by Theorem 4.20.
Altogether we get

HFS(i, j) = HX(i, j) = s

for all i ≥ max{MN , h − 1} and j ≥ max{N, v − 1}. Now we see that the criterion
in step 2) must be met before d2 > max{N, v − 1}, so the algorithm must stop while
d2 ≤ max{N, v − 1}. This finishes the proof that we only look for generators of I of
finitely many different bidegrees, which means that step 2) is entered finitely many times.
This completes the proof that the algorithm stops after finitely many steps because we
have that each step is performed finitely many times. �

Example 5.2. Let k = R and X = {p1, . . . , p4} ⊂ P1×P1, where p1 = [1 : 1]× [1 : 0],
p2 = [1 : 2]× [1 : 0], p3 = [1 : 2]× [1 : 2], p4 = [0 : 1]× [1 : 2]. Note that X is not ACM, so
we can not use Theorem 4.24. Instead, we will use the Buchberger-Moeller algorithm for
P1×P1 to compute the reduced Groebner basis of I(X) with respect to the graded reverse
lexicographic order. We first find αX = (2, 1, 1) and βX = (2, 2), then get α∗X = (3, 1) and
β∗X = (2, 2). From this we get a1 = 3 and ai = 4 for all i ≥ 2, and b1 = 2 and bj = 4 for
all i ≥ 2.

1) Let G = ∅, B = ∅, (d1, d2) = (0, 0), and M ∈ Mat0,4(R).
2) We have HFS(d1, d2) = 1, so the stopping condition is not satisfied.
3) We have HFS(d1, d2) = 1, so the condition is not satisfied. Let d1 = 1, B = ∅,

M ∈ Mat0,4(R), and L = {x0, x1}.

Chapter 5. Buchberger-Moeller Algorithm for P1 × P1 43

4) Set t = x1 and let L = {x0}.
5) Compute (t(p1), . . . , t(p4)) = (1, 2, 2, 1) = (v1, . . . , v4).
7) Let M =

[
1 2 2 1

]
and B = {x1}.

4) Set t = x0 and let L = ∅
5) Compute (t(p1), . . . , t(p4)) = (1, 1, 1, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0,−1,−1,−1).

7) Let M =

[
1 2 2 1
0 −1 −1 −1

]
and B = {x1, x0}.

2) We have HFS(2, d2) = 3, so the stopping condition is not satisfied.
3) We have HFS(2, d2) = 3, so the condition is not satisfied. Let d1 = 2, B = ∅,

M ∈ Mat0,4(R), and L = {x20, x0x1, x21}.
4) Set t = x21 and let L = {x20, x0x1}.
5) Compute (t(p1), . . . , t(p4)) = (1, 4, 4, 1) = (v1, . . . , v4).
7) Let M =

[
1 4 4 1

]
and B = {x21}.

4) Set t = x0x1 and let L = {x20}.
5) Compute (t(p1), . . . , t(p4)) = (1, 2, 2, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0,−2,−2,−1).

7) Let M =

[
1 4 4 1
0 −2 −2 −1

]
and B = {x21, x0x1 − x21}.

4) Set t = x20 and let L = ∅.
5) Compute (t(p1), . . . , t(p4)) = (1, 1, 1, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0, 0, 0,−5/2).

7) Let M =

1 4 4 1
0 −2 −2 −1
0 0 0 −5/2

 and B = {x21, x0x1 − x21, x20 − 3/2x0x1 + 1/2x21}.

2) We have HFS(d1, d2) = 3, so the stopping condition is not satisfied.
3) We have HFS(d1, d2) = 3, so the condition is not satisfied. Let d1 = 3, B = ∅,

M ∈ Mat0,4(R), and L = {x30, x20x1, x0x21, x31}.
4) Set t = x31 and let L = {x30, x20x1, x0x21}.
5) Compute (t(p1), . . . , t(p4)) = (1, 8, 8, 1) = (v1, . . . , v4).
7) Let M =

[
1 8 8 1

]
and B = {x31}.

4) Set t = x0x
2
1 and let L = {x30, x20x1}.

5) Compute (t(p1), . . . , t(p4)) = (1, 4, 4, 0) and reduce it against the rows of M to
get (v1, . . . , v4) = (0,−4,−4,−1).

7) Let M =

[
1 8 8 1
0 −4 −4 −1

]
and B = {x31, x0x21 − x31}.

4) Set t = x20x1 and let L = {x30}.
5) Compute (t(p1), . . . , t(p4)) = (1, 2, 2, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0, 0, 0, 1/2).

7) Let M =

1 8 8 1
0 −4 −4 −1
0 0 0 1/2

 and B = {x31, x0x21 − x31, x20x1 − 3/2x0x
2
1 + 1/2x31}.

Chapter 5. Buchberger-Moeller Algorithm for P1 × P1 44

4) Set t = x30 and let L = ∅.
5) Compute (t(p1), . . . , t(p4)) = (1, 1, 1, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0, 0, 0, 0).
6) Let G = {x30 − 3/2x20x1 + 1/2x0x

2
1}.

2) We have HFS(d1, d2) = 3, so the stopping condition is not satisfied.
3) We have HFS(i, d2) = ad2+1 for all i ≥ d1, so let d2 = 1, d1 = 0, B = ∅,

M ∈ Mat0,4(R), and L = {y0, y1}.
4) Set t = y1 and let L = {y0}.
5) Compute (t(p1), . . . , t(p4)) = (0, 0, 2, 2) = (v1, . . . , v4).
7) Let M =

[
0 0 2 2

]
and B = {y1}.

4) Set t = y0 and let L = ∅.
5) Compute (t(p1), . . . , t(p4)) = (1, 1, 1, 1) and reduce it against the rows of M to

get (v1, . . . , v4) = (1, 1, 0, 0).

7) Let M =

[
0 0 2 2
1 1 0 0

]
and B = {y1, y0 − 1/2y1}.

2) We have HFS(2, d2) = 6, so the stopping condition is not satisfied.
3) We have HFS(2, d2) = 6, so the condition is not satisfied. Let d1 = 1, B = ∅,

M ∈ Mat0,4(R), and L = {x0y0, x1y0, x0y1, x1y1}.
4) Set t = x1y1 and let L = {x0y0, x1y0, x0y1}.
5) Compute (t(p1), . . . , t(p4)) = (0, 0, 4, 2) = (v1, . . . , v4).
7) Let M =

[
0 0 4 2

]
and B = {x1y1}.

4) Set t = x0y1 and let L = {x0y0, x1y0}.
5) Compute (t(p1), . . . , t(p4)) = (0, 0, 2, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0, 0, 0,−1).

7) Let M =

[
0 0 4 2
0 0 0 −1

]
and B = {x1y1, x0y1 − 1/2x1y1}.

4) Set t = x1y0 and let L = {x0y0}.
5) Compute (t(p1), . . . , t(p4)) = (1, 2, 2, 1) and reduce it against the rows of M to

get (v1, . . . , v4) = (1, 2, 0, 0).

7) Let M =

0 0 4 2
0 0 0 −1
1 2 0 0

 and B = {x1y1, x0y1 − 1/2x1y1, x1y0 − 1/2x1y1}.

4) Set t = x0y0 and let L = ∅.
5) Compute (t(p1), . . . , t(p4)) = (1, 1, 1, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0,−1, 0, 0).

7) Let M =


0 0 4 2
0 0 0 −1
1 2 0 0
0 −1 0 0

 and B = {x1y1, x0y1−1/2x1y1, x1y0−1/2x1y1, x0y0−

x1y0 − 1/2x0y1 + 1/2x1y1}.
2) We have HFS(2, d2) = 6, so the stopping condition is not satisfied.

Chapter 5. Buchberger-Moeller Algorithm for P1 × P1 45

3) We have HFS(2, d2) = 6, so the condition is not satisfied. Let d1 = 2, B = ∅,
M ∈ Mat0,4(R), and L = {x20y0, x0x1y0, x21y0, x20y1, x0x1y1, x21y1}.

4) Set t = x21y1 and let L = {x20y0, x0x1y0, x21y0, x20y1, x0x1y1}.
5) Compute (t(p1), . . . , t(p4)) = (0, 0, 8, 2) = (v1, . . . , v4).
7) Let M =

[
0 0 8 2

]
and B = {x21y1}.

4) Set t = x0x1y1 and let L = {x20y0, x0x1y0, x21y0, x20y1}.
5) Compute (t(p1), . . . , t(p4)) = (0, 0, 4, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0, 0, 0,−1).

7) Let M =

[
0 0 8 2
0 0 0 −1

]
and B = {x21y1, x0x1y1 − 1/2x21y1}.

4) Set t = x20y1 and let L = {x20y0, x0x1y0, x21y0}.
5) Compute (t(p1), . . . , t(p4)) = (0, 0, 2, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0, 0, 0, 0).
6) Let G = {x30 − 3/2x20x1 + 1/2x0x

2
1, x

2
0y1 + 1/2x0x1y1 − 1/2x21y1}.

4) Set t = x21y0 and let L = {x20y0, x0x1y0}.
5) Compute (t(p1), . . . , t(p4)) = (1, 4, 4, 1) and reduce it against the rows of M to

get (v1, . . . , v4) = (1, 4, 0, 0).

7) Let M =

0 0 8 2
0 0 0 −1
1 4 0 0

 and B = {x21y1, x0x1y1 − 1/2x21y1, x
2
1y0 − 1/2x21y1}.

4) Set t = x0x1y0 and let L = {x20y0}.
5) Compute (t(p1), . . . , t(p4)) = (1, 2, 2, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0,−2, 0, 0).

7) LetM =


0 0 8 2
0 0 0 −1
1 4 0 0
0 −2 0 0

 andB = {x21y1, x0x1y1−1/2x21y1, x
2
1y0−1/2x21y1, x0x1y0−

x21y0 − 1/2x0x1y1 + 1/2x21y1}.
4) Set t = x20y0 and let L = ∅.
5) Compute (t(p1), . . . , t(p4)) = (1, 1, 1, 0) and reduce it against the rows of M to

get (v1, . . . , v4) = (0, 0, 0, 0).
6) Let G = {x30−3/2x20x1 +1/2x0x

2
1, x

2
0y1 +1/2x0x1y1−1/2x21y1, x

2
0y0−3/2x0x1y0 +

1/2x21y0 + 1/2x0x1y1 − 1/4x21y1}.
2) We have HFS(d1, 2) = 6, so the stopping condition is not satisfied.
3) We have HFS(i, d2) = ad2+1 for all i ≥ d1, so let d2 = 2, d1 = 0, B = ∅,

M ∈ Mat0,4(R), and L = {y20, y0y1, y21}.
4) Set t = y21 and let L = {y20, y0y1}.
5) Compute (t(p1), . . . , t(p4)) = (0, 0, 4, 4) = (v1, . . . , v4).
7) Let M =

[
0 0 4 4

]
and B = {y21}.

4) Set t = y0y1 and let L = {y20}.
5) Compute (t(p1), . . . , t(p4)) = (0, 0, 2, 2) and reduce it against the rows of M to

get (v1, . . . , v4) = (0, 0, 0, 0).

Chapter 5. Buchberger-Moeller Algorithm for P1 × P1 46

6) Let G = {x30−3/2x20x1 +1/2x0x
2
1, x

2
0y1 +1/2x0x1y1−1/2x21y1, x

2
0y0−3/2x0x1y0 +

1/2x21y0 + 1/2x0x1y1 − 1/4x21y1, y0y1 − 1/2y21}.
4) Set t = y20 and let L = ∅.
5) Compute (t(p1), . . . , t(p4)) = (1, 1, 1, 1) and reduce it against the rows of M to

get (v1, . . . , v4) = (1, 1, 0, 0).

7) Let M =

[
0 0 4 4
1 1 0 0

]
and B = {y21, y20 − 1/4y21}.

2) We now have LT (G) = 〈x30, x20y1, x20y0, y0y1〉. This implies that {yj0, y
j
1} is a k-

basis for S(0,j) and {x0xi−11 yj0, x
i
1y
j
0, x0x

i−1
1 yj1, x

i
1y
j
1} is a k-basis for S(i,j) for i ≥ 1

and j ≥ 2. This gives HFS(0, j) = 2 and HFS(i, j) = 4 for all i ≥ 1 and j ≥ 2.
Now for all i ≥ 0 and j ≥ 2 we have

HFS(i, j) = bi+1.

At this point we stop and we get that

G = {x30 − 3/2x20x1 + 1/2x0x
2
1, x

2
0y1 + 1/2x0x1y1 − 1/2x21y1,

x20y0 − 3/2x0x1y0 + 1/2x21y0 + 1/2x0x1y1 − 1/4x21y1, y0y1 − 1/2y21}

is the reduced Groebner basis for I(X) under the graded reverse lexicographic
order.

2. Future Directions

We still need to compare this algorithm to the standard Buchberger method. We will
leave this as an open problem, although we will discuss the comparison to the alternative
method. The alternative method of getting this result for a finite set of points in P1×P1,
say X = {p1, . . . , ps}, starts with taking the intersection of the ideals I({pi}). After that,
we get a set of generators for I(X), but we need to use Buchberger’s criterion. Checking
this criterion is significantly more tedious to compute for more generators, so this process
can take a long time. However, the Buchberger-Moeller algorithm for P1 × P1 mainly
involves linear algebra and computing Hilbert functions. These computations should be
easier than the computations involved in Buchberger’s criterion.

It may be possible to further extend this algorithm to compute the reduced Groebner
basis for a finite set of points in Pn1×· · ·×Pnk . A similar idea to the Buchberger-Moeller
algorithm for P1 × P1 could be used with a different stopping condition, but this has yet
to be determined. We looked at results obtained by A. Van Tuyl in [7] about the Hilbert
function of a finite set of points in Pn1 × · · · × Pnk , and it is possible that these results
could provide sufficient stopping conditions.

In conclusion, we leave some questions that need to be studied further. Is the
Buchberger-Moeller algorithm for P1 × P1 more efficient than other known methods of
finding the reduced Groebner basis for the defining ideal of a finite set of points in P1×P1?
Can we find even more efficient method of doing this? Lastly, can the Buchberger-Moeller

Chapter 5. Buchberger-Moeller Algorithm for P1 × P1 47

algorithm be extended to arbitrary multiprojective spaces? We hope that the ideas pre-
sented in this project will help to find answers for these questions.

Bibliography

[1] B. Buchberger, H.M. Moeller, The construction of multivariate polynomials with preassigned zeros.

In: Calmet J. (eds) Computer Algebra. EUROCAM 1982. Lecture Notes in Computer Science, vol

144. Springer, Berlin, Heidelberg, 1982.

[2] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational

Algebraic Geometry and Commutative Algebra. New York: Springer-Verlag, 1992.

[3] R. Froeberg, An Introduction to Grobner Bases. Chichester: Wiley, 1998.

[4] E. Guardo, A. Van Tuyl, Arithmetically Cohen-Macaulay Sets of Points in P1×P1. Cham: Springer,

2015.

[5] B. Hassett, Introduction to Algebraic Geometry. Cambridge: Cambridge UP, 2012.

[6] M. Kreuzer, L. Robbiano, Computational Commutative Algebra 2. Berlin: Springer, 2005.

[7] A. Van Tuyl, The border of the Hilbert function of a set of points in Pn1 × · · · × Pnk . J. Pure Appl.

Algebra, 176, pp. 223-247, 2002.

48

	Abstract
	Acknowledgements
	Chapter 1. Introduction
	Chapter 2. Background Algebra
	1. Monomials and Monomial Orders
	2. Division Algorithm, Groebner Bases, and Buchberger's Criterion
	3. Homogeneous Polynomials
	4. Hilbert Functions

	Chapter 3. Buchberger-Moeller Algorithm for points in Pn
	1. Points in Projective Space Pn
	2. The Buchberger-Möller Algorithm

	Chapter 4. Points in P1 P1
	1. Points and biprojective space
	2. Algebra of points in P1 P1
	3. The Universal Groebner basis for the defining ideal of an ACM set of points

	Chapter 5. Buchberger-Moeller Algorithm for P1P1
	1. Buchberger-Moeller Algorithm for P1P1
	2. Future Directions

	Bibliography

