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Abstract

The van der Waerden complex vdW (n, k), defined in 2016 by Ehrenborg, Govindaiah,
Park, and Readdy [2], has been studied in the context of topology, and in particular,
homotopy equivalence. Here we look at vdW (n, k) from the context of combinatorial
commutative algebra. We consider the shellability of the van der Waerden complexes,
and give a necessary and sufficient condition on n and k for shellability.
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CHAPTER 1

Introduction

The van der Waerden complex vdW (n, k) is a simplicial complex defined in 2016 by
Ehrenborg, Govindaiah, Park, and Readdy [2]. These simplicial complexes are defined by
arithmetic progressions and have been studied in the context of topology. This project
aims to look at the van der Waerden complex in a different context; that is, a com-
binatorial commutative algebraic perspective. In particular, we will be considering the
shellability of these complexes. This chapter will introduce some key ideas which will be
used throughout. More detailed explanations of the ideas discussed here can be found in
Chapter 2.

We first introduce simplicial complexes. Given a set of vertices X, a simplicial complex
on X is defined by a set ∆ of subsets of X such that both of the following hold:

• for every vertex xi ∈ X, {xi} ∈ ∆, and
• if F ∈ ∆, then every subset of F is also in ∆.

Each set F ∈ ∆ is called a face of the simplicial complex. In addition to this set notation,
we can also represent simplicial complexes pictorially. We now give an example of a
simplicial complex.

Example 1.1. Consider the vertex set X = {x1, x2, x3, x4, x5}. Then consider the set
of vertex subsets

∆ =


{x1, x2, x3}, {x1, x2}, {x1, x3}, {x2, x3},
{x1, x4, x5}, {x1, x4}, {x1, x5}, {x4, x5},
{x1}, {x2}, {x3}, {x4}, {x5},∅

 .

Notice that each vertex appears as the sole member of a set in ∆, and every set in ∆ has
each of its subsets also appearing as a set. From this observation, we can see that ∆ is a
simplicial complex. We often express a simplicial complex in terms of its facets; that is,
the faces which are not strictly contained in any other face. In this way, we can express
this simplicial complex as

∆ = 〈{x1, x2, x3}, {x1, x4, x5}〉.

As mentioned, we can also draw this simplicial complex as shown below:
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x1

x2

x3

x4

x5

Figure 1.1. Simplicial complex ∆ = 〈{x1, x2, x3}, {x1, x4, x5}〉

Each face of a simplicial complex has a dimension equal to its cardinality minus one.
The dimension of the whole complex is defined to be the maximum of the dimensions of all
its facets. A simplicial complex is called pure if each of its facets have the same dimension.
The simplicial complex from Example 1.1 is an example of a pure 2-dimensional simplicial
complex.

The complexes of interest to us, the van der Waerden complexes, are another exam-
ple of pure complexes. The van der Waerden complex of dimension k > 0 on n > k
vertices, denoted vdW (n, k), is generated by facets given by arithmetic progressions
{xi, xi+d, . . . , xi+kd}, where 0 < i < i+ kd ≤ n. We now give an example to clarify.

Example 1.2. Consider the van der Waerden complex of dimension 2 on 7 vertices.
We then generate the complex

vdW (7, 2) =

〈
{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x4, x5, x6}, {x5, x6, x7},
{x1, x3, x5}, {x2, x4, x6}, {x3, x5, x7}, {x1, x4, x7}

〉
.

Pictorially, this simplicial complex looks like the following figure.

x1

x2

x3

x4

x5x6

x7

Figure 1.2. Simplicial complex vdW (7, 2)

A pure simplicial complex is called shellable if its facets can be put together in a
particularly nice way. If the complex can be assembled one facet at a time such that each
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new facet joins the previous facets along a face with dimension one less than that of the
complex, this condition is satisfied. The simplicial complex in Example 1.1 is then not
shellable, since its only two facets join along a face with dimension zero, but the complex
has dimension two. The van der Waerden complex vdW (7, 2) from the Example 1.2 is
another example of a non-shellable complex. On the other hand, the simplicial complex
on four vertices given by Γ = 〈{x1, x2, x3}, {x1, x3, x4}〉 is shellable, since it has dimension
two and its two facets join along the face {x1, x3} which has dimension one.

Given a simplicial complex ∆, we can find a related simplicial complex called the
Alexander dual, which we denote by ∆∨. This complex can be found by taking the
complements of the minimal nonfaces of ∆ as facets. We illustrate with an example.

Example 1.3. Again, we consider ∆ = 〈{x1, x2, x3}, {x1, x4, x5}〉. The minimal non-
faces are {x2, x4}, {x2, x5}, {x3, x4}, and {x3, x5}. Taking the complements of these sets,
we have {x1, x3, x5}, {x1, x3, x4}, {x1, x2, x5} and {x1, x2, x4} as facets of the Alexander
dual. That it,

∆∨ = 〈{x1, x2, x4}, {x1, x2, x5}, {x1, x3, x4}, {x1, x3, x5}〉.

Pictorially, this is represented by

x1x2 x3

x4

x5

Figure 1.3. Simplicial complex ∆∨ = 〈{x1, x2, x4}, {x1, x2, x5}, {x1, x3, x4}, {x1, x3, x5}〉

The Alexander dual of the Alexander dual of a simplicial complex will always give the
original simplicial complex as a result, i.e., (∆∨)∨ = ∆.

We can also take a simplicial complex ∆ and create an associated monomial ideal;
this is called the Stanley-Reisner ideal, denoted by I∆, and was defined by Stanley and
Reisner in the 1970’s. We create this ideal by assigning each vertex to a variable, and
then creating products of these variables for every nonface of the simplicial complex. This
will be especially useful in relation to the Alexander dual, and so we demonstrate this
using ∆∨ from the Example 1.3.

Example 1.4. Given ∆∨ = 〈{x1, x2, x4}, {x1, x2, x5}, {x1, x3, x4}, {x1, x3, x5}〉, we have
{x2, x3} and {x4, x5} as minimal nonfaces. Our Stanley-Reisner ideal will then be the ideal
generated by the monomials created through assigning each vertex a variable and taking
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the products of each of these sets. That is, we have the set of generators {x2x3, x4x5}.
Hence we have the Stanley-Reisner ideal of the Alexander dual, I∆∨ = 〈x2x3, x4x5〉.

We can use the Stanley-Reisner ideal of the Alexander dual of a simplicial complex
to determine if the simplicial complex is shellable or not. A more precise statement and
proof can be found in Theorem 3.4 of this paper. Shellability is a useful property to
consider, as it carries implications for other important properties; in particular, it can
determine if a simplicial complex is Cohen Macaulay. That is, if a simplicial complex is
shellable, then it is also Cohen-Macaulay. In this project, we will address the following
problem:

Question 1.5. For what values of n and k is the van der Warden complex vdW (n, k)
a shellable complex?

To answer this question, we begin by giving the required background information from
combinatorics and algebra. This includes a general discussion of simplicial complexes and
the language used to talk about them, as well as introducing the Stanley-Reisner ideal
and Alexander dual, and how to find these. We then introduce the concept of shellability.
We give three different equivalent definitions of shellability, as well as examples, and we
show how the Stanley-Reisner ideal I∆∨ of the Alexander dual of a simplicial complex
can be used to determine shellability. Next, we look at an important property of the van
der Waerden complex, and use this property to show which of these complexes are and
are not shellable. In particular, we explore the way in which different increment sizes of
facets of the van der Waerden complex result in important differences between the faces
given by them. We use this property to make some conclusions about IvdW (n,k)∨ , which
in turn gives us our final result. Finally, we restate the main theorem and make note of
additional areas of interest related to van der Waerden complexes and shellability.

The main theorem is as follows:

Theorem 4.12. Let 0 < k < n be integers and consider the van der Waerden complex
vdW (n, k) of dimension k on n vertices. Then vdW (n, k) is shellable if and only if

• n ≤ 6, or
• n > 6 and k = 1, or
• n > 6 and n

2
≤ k < n.

As noted above, this is proved using the the Stanley-Reisner ideal IvdW (n,k)∨ of the
Alexander dual of vdW (n, k). We show that given this condition vdW (n, k) is shellable,
and that otherwise IvdW (n,k)∨ does not have linear quotients.



CHAPTER 2

Background

This chapter will introduce the relevant information from combinatorics and algebra.
We begin with a general discussion of simplicial complexes and some of their properties.
We will also relate simplicial complexes to monomial ideals via the Stanley Reisner ideal
and discuss some results which can be found using this relation. Much of the introductory
material here can be found in the survey done by Francisco, Mermin, and Schweig [4].

1. Simplicial Complexes

In this section, we define simplicial complexes along with some of their properties. We
demonstrate these properties with some examples.

Definition 2.1. Fix n > 0 and let {x1, x2, . . . , xn} be a set of vertices. A simplicial
complex on {x1, . . . , xn} is a set ∆ of subsets of {x1, . . . , xn} where A ∈ ∆ if A ⊆ F ∈ ∆,
and for all 0 < i ≤ n, {xi} ∈ ∆.

Elements of ∆ are called simplices, or faces. A face F ∈ ∆ for which there is no A ∈ ∆
such that F ( A is called a facet. A simplicial complex can be described by its facets, i.e.,
∆ = 〈F1, F2, . . . , Fs〉. A set B /∈ ∆ is called a minimal non-face of ∆ if for any A ( B,
the set A ∈ ∆.

Definition 2.2. Let ∆ be a simplicial complex. The dimension of a face of ∆ is one
less than its cardinality, i.e., dim(A) = |A| − 1. The dimension of ∆ is the dimension of
its largest facet.

We now look at some examples of simplicial complexes.

Example 2.3. As mentioned above, we can denote a simplicial complex ∆ by the set
of its facets. The following set ∆ is a simplicial complex on the set {x1, x2, x3, x4, x5}:

∆ = 〈{x1, x2, x3}, {x1, x4}, {x1, x5}, {x2, x4}〉.

Notice that the largest face of ∆ has dimension 2, and hence, ∆ has dimension 2.

A simplicial complex can also be represented pictorially, where each xi is a vertex and
an edge joins xi to xj if and only if {xi, xj} is a face of ∆. Further, the area bounded by
edges x1x2, x2x3, . . . , xp−1, xp is filled if and only if {x1, x2, . . . , xp} is a face of ∆. Using
this, we have the following representation of ∆:

5
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x1x2

x3

x4

x5

Figure 2.1. Simplicial complex ∆ = 〈{x1, x2, x3}, {x1, x4}, {x1, x5}, {x2, x4}〉

Example 2.4. The void complex, ∆ = {∅}, is the simplicial complex with no faces.

Example 2.5. Consider the picture Γ:

x1x2

x3 x4

Figure 2.2. Picture Γ

This does not represent a simplicial complex, since {x1, x2, x3, x4} would be a facet,
but none of {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}, {x1, x3}, or {x2, x4} are
faces. If these faces were to be included, we would then have the simplicial complex
Γ′ = 〈{x1, x2, x3, x4}〉, and would have the representation:

x1x2

x3 x4

Figure 2.3. Simplicial complex Γ′ = 〈{x1, x2, x3, x4}〉

That is, Γ′ is a solid tetrahedron. In this case, Γ′ is a simplicial complex with dimension
3.
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An interesting property which some simplicial complexes have is purity. A simplicial
complex ∆ is called pure if all of its facets have the same dimension. We now give additonal
examples of simplicial complexes and note if they possess this property or not.

Example 2.6. Consider the simplicial complex

∆ = 〈{x1, x2, x3, x6}, {x2, x4, x5, x6}, {x1, x2, x3, x5}〉.

This simplicial complex is pure since each facet has dimension 3.

Example 2.7. The simplicial complex

∆ = 〈{x1, x2, x3, x4}, {x1, x2, x5}, {x1, x4, x5}〉

is not pure, since there are facets with both dimension 3 and 2.

Example 2.8. The simplicial complex given by

∆ = 〈{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x1, x3, x5}〉

is a pure simplicial complex of dimension 2. In fact, this is an example of a special type of
simplicial complex, called the van der Waerden complex, which will be discussed in depth
later.

2. Alexander Duality and the Stanley Reisner Ideal

Here we introduce concepts which relate simplicial complexes to other simplicial com-
plexes and to monomial ideals. We also consider some properties of these ideals.

Definition 2.9. For a simplicial complex ∆ on the set of verticesX = {x1, x2, . . . , xn},
the Alexander dual of ∆, denoted ∆∨, is the simplicial complex whose facets are comple-
ments of the minimal non-faces of ∆. That is,

∆∨ = {X\m | m /∈ ∆}.

Notice that the dual of the dual is the original complex, i.e., (∆∨)∨ = ∆.

Example 2.10. Consider the simplicial complex given by

∆ = 〈{x1, x2, x4}, {x2, x3}, {x3, x4}, {x4, x5}〉.

From this, we can see that the minimal non-faces are

{x1, x3}, {x1, x5}, {x2, x5}, {x3, x5}, {x2, x3, x4}.

Finding the complements of these non-faces, we have

∆∨ = 〈{x2, x4, x5}, {x2, x3, x4}, {x1, x3, x4}, {x1, x2, x4}, {x1, x5}〉.

We can then illustrate these complexes as done below.
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x1x2

x3 x4

x5

x1x2

x3 x4

x5

Figure 2.4. A simplicial complex ∆ (left) and its Alexander dual ∆∨

Definition 2.11. A monomial in a ring k[x1, . . . , xn] is an element which can be
written uniquely (up to order) as a product of variables; a monomial m is squarefree if no
variable appears more than once in this factorization. A squarefree monomial ideal is an
ideal I ⊂ k[x1, . . . , xn] generated by squarefree monomials of k[x1, . . . , xn].

Given a simplicial complex, we can define a related squarefree monomial ideal.

Definition 2.12. Let ∆ be a simplicial complex on the set {x1, . . . , xn}. Then the
Stanley-Reisner ideal of ∆ is the squarefree monomial ideal in k[x1, . . . , xn] defined by

I∆ = 〈xi1 · · ·xit : {xi1 , . . . , xit} /∈ ∆〉.

Example 2.13. Again we consider the simplicial complex defined by

∆ = 〈{x1, x2, x4}, {x2, x3}, {x3, x4}, {x4, x5}〉.

To find its Stanley-Reisner ideal, we must find the minimal non-faces of ∆. These are
{x1, x3}, {x1, x5}, {x2, x5}, {x3, x5}, and {x2, x3, x4}. We then assign each vertex a vari-
able and create monomials by taking the product of variables corresponding to each
minimal non-face. This gives

I∆ = 〈x1x3, x1x5, x2x5, x3x5, x2x3x4〉.

Sometimes we want to consider the Stanley-Reisner ideal of the Alexander dual of a
simplicial complex. This is particularly interesting since it has consequences related to
the shellability of the complex which will be discussed in Chapter 3. Rather than taking
the Alexander dual of a simplicial complex and then taking its Stanley-Reisner ideal, we
can go straight from ∆ to I∆∨ .

Theorem 2.14. Let ∆ = 〈F1, F2 . . . , Fs〉 be a simplicial complex. Then

I∆ = Q1 ∩ · · · ∩Qs,

where Qi = 〈x | x /∈ Fi〉. See [3] for a proof.

Corollary 2.15. Let ∆ = 〈F1, F2 . . . , Fs〉 be a simplicial complex and set Qi =
〈x | x /∈ Fi〉. Then

I∆∨ = 〈m1, . . . ,ms〉
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where mi =
∏
x∈Qi

x =
∏
x/∈Fi

x. See [6] for this result.

Example 2.16. We again recall the complex defined by

∆ = 〈{x1, x2, x4}, {x2, x3}, {x3, x4}, {x4, x5}〉

and its Alexander dual

∆∨ = 〈{x2, x4, x5}, {x2, x3, x4}, {x1, x3, x4}, {x1, x2, x4}, {x1, x5}〉.

Notice that the minimal non-faces of ∆∨ are given by

{{x3, x5}, {x1, x2, x3}, {x1, x2, x5}, {x1, x4, x5}},

and hence we have

I∆∨ = 〈x3x5, x1x2x3, x1x2x5, x1x4x5〉.
We can also compute this using Corollary 2.15. Taking Qi for each facet of ∆ and taking
products, we find

I∆∨ = 〈x3x5, x1x4x5, x1x2x5, x1x2x3〉,
which is the same ideal we found using the first method.

Definition 2.17. Let I, J be ideals in the ring R. The colon ideal of I with J is given
by

〈I〉 : 〈J〉 = {r ∈ R | rJ ⊂ I}.

Proposition 2.18. Let I, J be monomial ideals generated by {m1,m2, . . . ,ms} and
{n1, n2, . . . , nt} respectively. Then

I : J =
t⋂

j=1

(I : 〈nj〉) =
t⋂

j=1

〈
mi

gcd(mi, nj)

∣∣∣∣ i = 1, . . . , s

〉
.

See [3] for a proof.

Definition 2.19. Let I be a squarefree monomial ideal in k[x1, . . . , xn] with I =
〈m1, . . . ,ms〉. The ideal I has linear quotients if there is an ordering mi1 , . . . ,mis such
that for 1 ≤ rt ≤ n,

〈mi1 , . . . ,mit−1〉 : 〈mit〉 = 〈xj1 , . . . , xjrt 〉
for all 1 < t ≤ s, i.e., it is generated by a subset of the variables.

To illustrate this method of finding colon ideals and linear quotients, we give an
example.

Example 2.20. Let I, J be ideals in k[x1, x2, x3, x4, x5] generated in the following way:

I = 〈x1x2x3, x1x4x5, x2x5〉
J = 〈x1x2x3, x1x3x4, x2x3x4〉.
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We take the colon ideal below:

I : J = 〈x1x2x3, x1x4x5, x2x5〉 : 〈x1x2x3, x1x3x4, x2x3x4〉

=
3⋂
j=1

(I : 〈nj〉)

=
3⋂
j=1

〈
mi

gcd(mi, nj)

∣∣∣∣ i = 1, 2, 3

〉
=

〈
x1x2x3

x1x2x3

,
x1x4x5

x1

,
x2x5

x2

〉
∩
〈
x1x2x3

x1x3

,
x1x4x5

x1x4

,
x2x5

1

〉
∩
〈
x1x2x3

x2x3

,
x1x4x5

x4

,
x2x5

x2

〉
= 〈1, x4x5, x5〉 ∩ 〈x2, x5, x2x5〉 ∩ 〈x1, x1x5, x5〉
= R ∩ 〈x2, x5〉 ∩ 〈x1, x5〉
= 〈x2, x5〉 ∩ 〈x1, x5〉
= 〈x5, x1x2〉.

Hence, we have the colon ideal of I with J . Now we want to check if either of our original
ideals have linear quotients. We begin with I, and suggest the ordering of monomials
m1 = x2x5, m2 = x1x2x3, m3 = x1x4x5. Then consider the following colon ideals:

〈x2x5〉 : 〈x1x2x3〉 =

〈
x2x5

x2

〉
= 〈x5〉

〈x2x5, x1x2x3〉 : 〈x1x4x5〉 =

〈
x2x5

x5

,
x1x2x3

x1

〉
= 〈x2, x2x3〉 = 〈x2〉.

Since each of these colon ideals are generated by a single variable, the ideal I has linear
quotients. Similarly, the ideal J also has linear quotients with the ordering n1 = x1x2x3,
n2 = x1x3x4, and n3 = x2x3x4.

While each of the monomial ideals in the previous example have linear quotients, this
is not always the case. We now look at an example where this does not occur.

Example 2.21. Next we consider the ideal in k[x1, x2, x3, x4, x5, x6] given by

L = 〈x1x2x3x4, x1x3x5x6, x2x4x5x6〉.

We will show this ideal does not have linear quotients by showing that none of the gener-
ators may be the final monomial in an ordering. To do this, consider the following colon



Chapter 2. Background 11

ideals:

〈x1x2x3x4, x1x3x5x6〉 : 〈x2x4x5x6〉 =

〈
x1x2x3x4

x2x4

,
x1x3x5x6

x5x6

〉
= 〈x1x3〉

〈x1x2x3x4, x2x4x5x6〉 : 〈x1x3x5x6〉 =

〈
x1x2x3x4

x1x3

,
x2x4x5x6

x5x6

〉
= 〈x2x4〉

〈x1x3x5x6, x2x4x5x6〉 : 〈x1x2x3x4〉 =

〈
x1x3x5x6

x2x4

,
x2x4x5x6

x1x3

〉
= 〈x5x6〉.

Notice that none of these colon ideals are generated by a set of variables; each of their
generators is a product of two variables. Hence, we conclude that L cannot have linear
quotients.



CHAPTER 3

Shellable Simplicial Complexes

We now focus on a specific family of simplicial complexes related to the property of
shellability. We discuss shellable simplicial complexes, giving some examples and identi-
fying strategies for determining the shellability of a given simplicial complex.

Definition 3.1. Let ∆ be a d-dimensional pure simplicial complex on {x1, . . . , xn}.
An ordering of the facets F1, F2, . . . , Fs of ∆ is called a shelling if one of the following
equivalent statements are satisfied:

(1) 〈Fi〉∩ 〈F1, . . . , Fi−1〉 is generated by a non-empty set of maximal proper subfaces
of Fi, i.e., faces of dimension dim(Fi)− 1, for all i such that 1 < i ≤ s.

(2) The set {A | A ∈ 〈F1, . . . , Fi〉, A /∈ 〈F1, . . . , Fi−1〉} has a unique minimal element
for all i such that 1 < i ≤ s.

(3) For all i, j with 1 ≤ j < i ≤ s, there exists some x ∈ Fi\Fj and some 1 ≤ k < i
with Fi\Fk = {x}.

We say that a simplicial complex is shellable if it admits a shelling.

Given this definition, we first want to show that each of these conditions are equivalent.
We will then demonstrate how to use this definition to determine whether a simplicial
complex is shellable, and look at other ways to determine shellability.

Theorem 3.2. The statements (1), (2), and (3) from Definition 3.1 are equivalent.

Proof. To show this equivalence, we follow the proof given by Bruns and Herzog [1].

(1)⇒ (2)
Under relabeling, suppose that Fi = {x1, x2, . . . , xp} is a facet of dimension p−1. Then let
A1, . . . , Ap be the maximal proper subfaces of Fi defined by Al = {x1, x2, . . . , xl−1, xl+1,
. . . , xp} for 1 ≤ l ≤ p, i.e., Al = Fi\{xl} and dim(Al) = p − 2. Now, by assumption, we
have

〈Fi〉 ∩ 〈F1, F2, . . . , Fi−1〉 = 〈Aj1 , Aj2 , . . . , Ajq〉
for 1 ≤ q ≤ p, where jt ∈ {1, 2, . . . , p} for all 1 ≤ t ≤ q. Now define the face G =
{xj1 , xj2 , . . . , xjq}.

It is clear that G ∈ 〈Fi〉, and so we have G ∈ 〈F1, F2, . . . , Fi〉. However, G was
constructed in such a way that G /∈ 〈Aj1 , Aj2 , . . . , Ajq〉, i.e., G /∈ 〈Fi〉 ∩ 〈F1, F2, . . . , Fi−1〉.
But since G ∈ 〈Fi〉, it must be that G /∈ 〈F1, F2, . . . , Fi−1〉. Hence, we have that

G ∈ A = {A | A ∈ 〈F1, . . . , Fi〉, A /∈ 〈F1, . . . , Fi−1〉}.
12
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Notice that for 1 ≤ r ≤ q, removing the r-th vertex from G will give

Gr = G\{xjr} = {xj1 , xj2 , . . . , xjr−1 , xjr+1 , . . . , xjq} ⊂ Ajr ,

and so Gr /∈ A. As a result, we see that G is a minimal element.

Now suppose that there is another minimal element H = {xv1 , xv2 , . . . , xvq} ∈ A.
Since H ∈ 〈Fi〉, it must be that vt ∈ {1, 2, . . . , p}. Further, if there is some xvt such that
xvt /∈ H, then H ⊂ Avt , i.e., H /∈ A. But this means that G ⊂ H, and since H is minimal,
G = H. Hence, it must be that G is the unique minimal element of A.

(2)⇒ (3)
Suppose that for all i such that 1 < i ≤ s, G is the unique minimal element of A. After
relabeling, suppose that G = {x1, x2, . . . , xp}. By assumption, we have G 6⊂ Fj for all
1 ≤ j < i, and so G\Fj 6= ∅. Then for some 1 ≤ q ≤ p, we have xq ∈ G\Fj. Further,
since G ⊂ Fi, xq ∈ Fi\Fj. If Fi\Fj = {xq}, we are done.

Now suppose Fi\Fj 6= {xq}. Since G is minimal, we know that G\{xq} /∈ A, i.e.,
G\{xq} ∈ 〈F1, . . . , Fi−1〉. Then there is some k with 1 ≤ k ≤ i−1 such that G\{xq} ⊂ Fk.
Then, since xq /∈ Fk, we have that Fi\Fk = {xq}.

(3)⇒ (1)
Consider 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉 and suppose that there is a face A ∈ 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉.
Then we have that A ⊂ Fi and A ⊂ Fj for some 1 ≤ j < i ≤ s.

By assumption, there is some x ∈ Fi\Fj, i.e., x ∈ Fi and x /∈ Fj, and some 1 ≤ k < i
such that Fi\Fk = {x}. Then consider Fi\{x}. Since A ⊂ Fj, we have that x /∈ A, and
so A ⊂ Fi\{x}. Then Fi\{x} is a maximal proper subface of Fi containing A. Also, since
Fi\Fk = {x}, we have Fi\{x} ⊂ Fk, and so Fi\{x} ∈ 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉. Hence, we
conclude that 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉 is generated by a set of maximal proper subfaces of
Fi. �

Example 3.3. Consider the simplicial complex defined by the following figure.

x1

x2

x3x4

x5

Figure 3.1. ∆ = 〈{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x4, x5}〉

Consider the ordering of the facets F1 = {x1, x2, x3}, F2 = {x1, x3, x4}, F3 = {x1, x2, x4},
F4 = {x2, x4, x5}. We want to show that this ordering is a shelling. We will do this in
three different ways to show how each different definition can be applied.
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Using Definition 3.1 (1), we look at the following sets.

〈F2〉 ∩ 〈F1〉 = 〈{x1, x3}〉
〈F3〉 ∩ 〈F1, F2〉 = 〈{x1, x2}, {x1, x4}〉

〈F4〉 ∩ 〈F1, F2, F3〉 = 〈{x2, x4}〉.

Notice that we have subsets of maximal proper faces {x1, x3} ⊂ F2, {x1, x2}, {x1x4} ⊂
F3, and {x2, x4} ⊂ F4 which generate these sets respectively. Hence, we have that this
simplicial complex is shellable.

Using Definition 3.1 (2), we look at the following sets.

{A | A ∈ 〈F1, F2〉, A /∈ 〈F1〉} = {{x1, x3, x4}, {x1, x4}, {x3, x4}, {x4}}
{A | A ∈ 〈F1, F2, F3〉, A /∈ 〈F1, F2〉} = {{x1, x2, x4}, {x2, x4}}

{A | A ∈ 〈F1, F2, F3, F4〉, A /∈ 〈F1, F2, F3〉} = {{x2, x4, x5}, {x2, x5}, {x4, x5}, {x5}}.

Notice that in each of these sets, we have the unique minimal elements {x4}, {x2, x4},
and {x5} respectively, and so our simplicial complex is shellable.

Using Definition 3.1 (3), we need to consider each i, j such that 1 ≤ j < i ≤ 5, and
then look at the sets Fi\Fj:

j = 1, i = 2 F2, \F1 = {{x4}}
j = 1, i = 3 F3, \F1 = {{x4}}
j = 1, i = 4 F4, \F1 = {{x4, x5}, {x4}, {x5}}
j = 2, i = 3 F3, \F2 = {{x2}}
j = 2, i = 4 F4, \F2 = {{x2, x5}, {x2}, {x5}}
j = 3, i = 4 F4, \F3 = {{x5}}.

For each case where Fi\Fj has a single element, we choose x to be this element and k = j.
For F4\F1, we can choose x = x4 and k = 2. For F4\F2, we can choose x = x2 and k = 3.
We conclude that this is a shellable simplicial complex.

While each of the methods demonstrated in the previous example can be used to
show shellability from the definition, it is sometimes easier to use a different method to
show shellability. We now introduce an alternative method using commutative algebra
for showing the shellability of a simplicial complex.

Theorem 3.4. A simplicial complex ∆ is shellable if and only if the Stanley-Reisner
ideal I∆∨ of the Alexander dual of ∆ has linear quotients.

Proof. We use the proof given by Herzog, Hibi, and Zheng [7] as an outline for the
proof provided here.
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First, suppose we have a simplicial complex ∆ which is shellable, and let F1, F2, . . . , Fs
be a shelling order of its facets. By Definition 3.1 (3), we have that for all i, j with
1 ≤ j < i ≤ s, there exists some x ∈ Fi\Fj and some 1 ≤ k < i with Fi\Fk = {x}. By
Corollary 2.15, we know there is a one-to-one correspondence between these facets and
the monomial generators of I∆∨ . In particular, we have

I∆∨ = 〈m1,m2, . . . ,ms〉,

where mt is the monomial created by taking the product of the vertices in the complement
of Ft.

Since for every 1 ≤ j < i ≤ s there is an x ∈ Fi\Fj, we know that x - mi and x | mj.
That is, we know that

mj

gcd(mi,mj)
will have x as a divisor. Further, since there is some k < i

with Fi\Fk = {x}, we know that x - mi and x | mk, and in particular that this x is the
only such element for which this holds. That is, we have that mk

gcd(mi,mk)
= x. Combining

these two facts, we know that for each
mj

gcd(mi,mj)
with a factor of x, there is a k < i such

that mk

gcd(mi,mk)
= x

From Proposition 2.18, we can write

〈m1,m2, . . . ,mi−1〉 : 〈mi〉 =

〈
m1

gcd(mi,m1)
,

m2

gcd(mi,m2)
, . . . ,

mi−1

gcd(mi,mi−1)

〉
.

From above, we know that for each 1 ≤ j < i,
mj

gcd(mi,mj)
is either a variable or is divisible

by some other mk

gcd(mi,mk)
which is a variable, and so 〈m1,m2, . . . ,mi−1〉 : 〈mi〉 is generated

by a subset of variables. Hence, we have that given a shellable simplicial complex ∆, I∆∨

has linear quotients.

Now suppose that given a simplicial complex ∆, the Stanley-Reisner ideal of its
Alexander dual has linear quotients. Let m1,m2, . . . ,ms be an ordering of the gener-
ators of I∆∨ which gives linear quotients. Then, for every 1 < i ≤ s, we have that
〈m1,m2, . . . ,mi−1〉 : 〈mi〉 is generated by a subset of variables.

Again from Proposition 2.18, we have

〈m1,m2, . . . ,mi−1〉 : 〈mi〉 =

〈
m1

gcd(mi,m1)
,

m2

gcd(mi,m2)
, . . . ,

mi−1

gcd(mi,mi−1)

〉
.

Since this must be generated by a subset of variables, we know that for every 1 ≤ j < i,
it must be that either

mj

gcd(mi,mj)
is a variable or has a variable factor x such that for some

1 ≤ k < i, mk

gcd(mi,mk)
= x. In particular, we have that there is some x such that x | mj

and x - mi, and there is a k such that x is the only variable for which x | mk and x - mi

is true.

In terms of the facets of ∆, recall the one-to-one correspondence of monomial genera-
tors of I∆∨ to facets of ∆ given by Corollary 2.15. In particular, we can denote each of the
s facets of ∆ by Fi = {xj1 , xj2 , . . . , xjr}, where mt = x1x2···xn

xj1xj2 ···xjr
. Then for every 1 ≤ i < j,

we have that there exists some vertex x such that x ∈ Fi and x /∈ Fj, i.e., x ∈ Fi\Fj.
Further, we know that for some such x, there is a k with 1 ≤ k < i such that x is the only
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such vertex with x ∈ Fi and x /∈ Fk, i.e., Fi\Fk = {x}. Now, for any 1 ≤ j < i ≤ s, there
is an x ∈ Fi\Fj and some 1 ≤ k < i such that Fi\Fk = {x}. But this then implies that
F1, . . . , Fs is a shelling order. That is, if I∆∨ has linear quotients, then ∆ is shellable.

From the above, we conclude that ∆ is shellable if and only if I∆∨ has linear quotients.
�

Example 3.5. Recall the simplicial complex from Example 3.3,

∆ = 〈{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x4, x5}〉.
We first find the Stanley-Reisner ideal of the Alexander dual of ∆. To do this, we take
the complements of the facets and then create monomials by taking products of these
complements. Doing this, we get

{x1, x2, x3} → {x4, x5} → x4x5

{x1, x2, x4} → {x3, x5} → x3x5

{x1, x3, x4} → {x2, x5} → x2x5

{x2, x4, x5} → {x1, x3} → x1x3,

and hence our ideal is given by I∆∨ = 〈x4x5, x3x5, x2x5, x1x3〉. We will use the shelling
order to get the linear quotient ordering. We propose the following ordering: m1 = x1x3,
m2 = x3x5, m3 = x2x5, m4 = x4x5. To determine if I∆∨ has linear quotients, we now
check the following colon ideals:

〈x1x3〉 : 〈x3x5〉 =

〈
x1x3

x3

〉
= 〈x1〉

〈x1x3, x3x5〉 : 〈x2x5〉 =

〈
x1x3

1
,
x3x5

x5

〉
= 〈x3〉

〈x1x3, x3x5, x2x5〉 : 〈x4x5〉 =

〈
x1x3

1
,
x3x5

x5

,
x2x5

x5

〉
= 〈x3, x2〉.

We can see that each colon ideal is generated by a subset of variables, and so I∆∨ has
linear quotients. We can use this to conclude that ∆ is shellable.



CHAPTER 4

Shellability and the van der Waerden Complex

In this chapter, we define the van der Waerden complex, originally defined by Ehren-
borg, Govindaiah, Park, and Readdy [2]. We also prove our main result in this chapter;
in particular, we classify all the van der Waerden complexes that are shellable.

1. van der Waerden Complexes

Here we introduce the van der Waerden complex and give some examples.

Definition 4.1. Let 0 < k < n and define the vertex set {x1, x2, . . . , xn}. The van der
Waerden complex of dimension k on n vertices, denoted vdW (n, k), is the pure simplicial
complex on {x1, . . . , xn} whose facets are given by arithmetic progressions of the form
{xi, xi+d, xi+2d, . . . , xi+kd} for d ∈ Z with 1 ≤ i < i+ kd ≤ n.

Given a facet F = {xi, xi+d, xi+2d, . . . , xi+kd}, we call d the increment of F .

Example 4.2. Let n = 5 and k = 2. The facets of vdW (5, 2) are {x1, x2, x3},
{x2, x3, x4}, {x3, x4, x5}, and {x1, x3, x5}, and we have

vdW (5, 2) = 〈{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x1, x3, x5}〉.
This gives us the van der Warden complex on 5 vertices of dimension 2. In this example,
we have three facets with an increment of 1, and one facet with an increment of 2. We
can also represent this complex pictorially:

x1x2

x3

x4 x5

Figure 4.1. vdW (5, 2)

Example 4.3. For n = 8, k = 3, we have

vdW (8, 3) =

〈
{x1, x2, x3, x4}, {x2, x3, x4, x5}, {x3, x4, x5, x6}, {x4, x5, x6, x7},
{x5, x6, x7, x8}, {x1, x3, x5, x7}, {x2, x4, x6, x8}

〉
.

17
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This complex has five facets with an increment of 1, and two facets with an increment of
2. We can represent this complex pictorially, as shown below.

x1

x2

x3

x4

x5

x6

x7

x8

Figure 4.2. vdW (8, 3)

We now describe a specific property about the facets of the van der Waerden complex.
This property will be used in our main result.

Lemma 4.4. Let 2 < k < n
2

and n > 6, and suppose F1 = {xi, xi+d1 , . . . , xi+kd1} and
F2 = {xj, xj+d2 , . . . , xj+kd2} are facets of vdW (n, k) such that d1 > d2. If there is an a
with 0 ≤ a ≤ k such that xi+ad1 /∈ F2, then F1 and F2 differ by at least two vertices.

Proof. Suppose by contradiction that all other vertices of F1 are contained in F2.
We now consider the cases where a = 0 or a = k, a = 1, or 1 < a < k.

Case 1. First, suppose a = 0 or a = k. Notice that if a = k, we can relabel the vertices
by xp = yn+1−p and we will then be in the case of a = 0, so it is enough to consider the
case a = 0. We have that xi+d1 , xi+2d1 , xi+3d1 ∈ F2. In particular, there exist integers
1 ≤ α < β < γ ≤ k such that xi+d1 = xj+αd2 , xi+2d1 = xj+βd2 , and xi+3d1 = xj+γd2 . Then,
we can calculate the following:

i+ d1 = j + αd2,

so i+ d1 + d1 = j + αd2 + d1.

But then i+ 2d1 = j + αd2 + d1 = j + βd2.

This means βd2 = αd2 + d1. Rearranging gives

βd2 − αd2 = d1

d2(β − α) = d1

β − α =
d1

d2

.

Then, since d1 > d2, we have β − α = d1
d2
> 1, giving β > α + 1 > α.
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Next, notice

i+ d1 = j + αd2

< j + (α + 1)d2

= j + αd2 + d2

= i+ d1 + d2

< i+ 2d1,

and so we have j + (α + 1)d2 6= i + εd1 for any ε ∈ Z. Hence, xj+(α+1)d2 ∈ F1 but
xj+(α+1)d2 /∈ F2.

Similarly, we compute γ − β = d1
d2
> 1, giving γ > β + 1 > β. Using this, we have

i+ 2d1 = j + βd2

< j + (β + 1)d2

= j + βd2 + d2

= i+ 2d1 + d2

< i+ 3d1,

and so xj+(β+1)d2 ∈ F1 but xj+(β+1)d2 /∈ F2. We now have two vertices of F2 which do not
appear in F1.

Case 2. Suppose next that a = 1. In this case, we have xi, xi+2d1 , xi+3d1 ∈ F2. Then
there exist integers 1 ≤ α < β < γ ≤ k such that xi = xj+αd2 , xi+2d1 = xj+βd2 , and
xi+3d1 = xj+γd2 . Similarly to the previous case, we can compute the following:

i = j + αd2,

so i+ 2d1 = j + αd2 + 2d1 = j + βd2.

Then we have βd2 = αd2 + 2d1. Rearranging gives

βd2 − αd2 = 2d1

d2(β − α) = 2d1

β − α = 2
d1

d2

.

Since d1 > d2, we have β − α = 2d1
d2
> 2, and so β > α + 2 > α + 1 > α.

We now consider the vertex xj+(α+1)d2 of F2. Notice

i = j + αd2

< j + (α + 1)d2

= j + αd2 + d2

= i+ d2

< i+ 2d1.
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Since i < i + d2 < i + 2d1, it must be that xj+(α+1)d2 /∈ F1. We now have xi+d1 ∈ F1\F2

and xj+(α+1)d2 ∈ F2\F1.

Next, similarly to before, we calculate the following:

i+ 2d1 = j + βd2,

so i+ 2d1 + d1 = j + βd2 + d1.

But then i+ 3d1 = j + βd2 + d1 = j + γd2.

Then we have γd2 = βd2 + d1. Rearranging gives

γd2 − βd2 = d1

d2(γ − β) = d1

γ − β =
d1

d2

.

This gives that γ − β = d1
d2
> 1, and hence γ > β + 1 > β. Then, we can easily see that

the vertex xj+(β+1)d2 ∈ F2 is not in F1 by checking the calculations below:

i+ 2d1 = j + βd2

< j + (β + 1)d2

= j + βd2 + d2

= i+ 2d1 + d2

< i+ 3d1.

This implies that xj+(β+1)d2 ∈ F2\F1. Since |F1| = |F2|, this means that F1 and F2 differ
by at least two vertices.

Case 3. Finally, suppose that 1 < a < k. Here, xi+(a−2)d1 , xi+(a−1)d1 , xi+(a+1)d1 ∈ F2.
Then there exist integers 1 ≤ α < β < γ ≤ k such that xi+(a−2)d1 = xj+αd2 , xi+(a−1)d1 =
xj+βd2 , and xi+(a+1)d1 = xj+γd2 . With this, notice the following:

i+ (a− 2)d1 = j + αd2,

so i+ (a− 2)d1 + d1 = j + αd2 + d1.

But then i+ (a− 1)d1 = j + αd2 + d1 = j + βd2.

This means βd2 = αd2 + d1. Rearranging gives

βd2 − αd2 = d1

d2(β − α) = d1

β − α =
d1

d2

.

Recall that d1 > d2, and so β − α = d1
d2
> 1, hence β > α + 1 > α.
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Now we have the vertex xj+(α+1)d2 ∈ F2. On the other hand, we have

i+ (a− 2)d1 = j + αd2

< j + (α + 1)d2

= j + αd2 + d2

= i+ (a− 2)d1 + d2

< i+ (a− 1)d1.

Since i+ (a− 2)d1 < j + (α + 1)d2 < i+ (a− 1)d1, it must be that xj+(α+1)d2 /∈ F1.

We now calculate the following:

i+ (a− 1)d1 = j + βd2,

so i+ (a− 1)d1 + 2d1 = j + βd2 + 2d1.

But then i+ (a+ 1)d1 = j + βd2 + 2d1 = j + γd2.

Then we have γd2 = βd2 + 2d1. Rearranging gives

γd2 − βd2 = 2d1

d2(γ − β) = 2d1

γ − β = 2
d1

d2

.

This gives that γ − β = 2d1
d2
> 2, and hence γ > β + 2 > β + 1 > β. Now we consider the

vertex xj+(β+1)d2 ∈ F2. Since

i+ (a− 1)d1 = j + βd2

< j + (β + 1)d2

= j + βd2 + d2

= i+ (a− 1)d1 + d2

< i+ ad1 /∈ F1,

we have xj+(β+1)d2 /∈ F1.

Combining the three cases above, we see that for vdW (n, k) with 2 < k < n
2
, any two

facets with different increments will differ by at least two vertices. �

The previous lemma covers many cases, but excludes any case with k = 2. Lemma
4.5 and Lemma 4.6 cover the remaining case.

Lemma 4.5. Let 1 < k < n
2

and suppose F1 = {xi, xi+d1 , . . . , xi+kd1} and F2 =
{xj, xj+d2 , . . . , xj+kd2} are facets of vdW (n, k) such that d1 > d2. If there is an a with
0 < a < k such that xi+ad1 /∈ F2, then F1 and F2 differ by at least two vertices.

Proof. Suppose for a contradiction that all other vertices of F1 are contained in F2.
In particular, we have that xi, xi+kd1 ∈ F2. Then for some integers 0 ≤ α < β ≤ k,
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xi = xj+αd2 and xi+kd1 = xj+βd2 . This gives the following equalities: i = j + αd2 and
i+ kd1 = j + βd2. Using these, notice the following:

i = j + αd2,

so i+ kd1 = j + αd2 + kd1 = j + βd2.

Then we have βd2 = αd2 + kd1. Rearranging gives

βd2 − αd2 = kd1

d2(β − α) = kd1

β − α = k
d1

d2

.

Since d1 > d2, we have d1
d2
> 1, and hence k d1

d2
> k. Also notice that since 0 ≤ α < β ≤ k,

we have β − α ≤ k. But since β − α = k d1
d2

, this implies k < k d1
d2
≤ k, a contradiction.

We conclude that either xi or xi+kd1 does not appear in F2, and so F1 and F2 differ by at
least two vertices. �

Lemma 4.6. Let 1 < k < n
2

and suppose F1 = {xi, xi+d1 , . . . , xi+kd1} and F2 =
{xj, xj+d2 , . . . , xj+kd2} are facets of vdW (n, k) such that d1 is the largest odd increment
and d2 6= d1. If xi+ad1 /∈ F2 for either a = 0 or a = k, then F1 and F2 differ by at least
two vertices.

Proof. First notice that if a = k, we can relabel the vertices by xp = yn+1−p and will
then be in the case of a = 0. Hence, we consider only the case a = 0.

Suppose a = 0. Then we have that xi+d1 , xi+2d1 ∈ F2. That is, i + d1 = j + αd2 and
i+ 2d1 = j + βd2 for some integers 0 ≤ α < β ≤ k. Using this, we can see the following:

i+ d1 = j + αd2,

so i+ d1 + d1 = j + αd2 + d1.

But then i+ 2d1 = j + αd2 + d1 = j + βd2.

This means βd2 = αd2 + d1. Rearranging gives

βd2 − αd2 = d1

d2(β − α) = d1

β − α =
d1

d2

.

Notice that since d1 is the largest odd increment, we have that either d1 > d2 or d2 = d1+1.
But since 0 ≤ α < β ≤ k, we have β − α ≥ 1, and so d1

d2
≥ 1, i.e., d2 6= d1 + 1. Then

d1 > d2, and so β − α = d1
d2
≥ 2. Further, since d1 is odd, d1

d2
6= 2c for any c ∈ Z, and so

β − α = d1
d2
≥ 3.
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We now have that β − α ≥ 3, and hence α < α + 1 < α + 2 < β. We now consider
the vertices xj+(α+1)d2 and xj+(α+2)d2 of F2. Notice that

j + (α + 1)d2 = j + αd2 + d2

= i+ d1 + d2

= i+ d1 +
d1

β − α

= i+ (1 +
1

β − α
)d1,

and

j + (α + 2)d2 = j + αd2 + 2d2

= i+ d1 + 2d2

= i+ d1 + 2
d1

β − α

= i+ (1 +
2

β − α
)d1.

Since β − α ≥ 3, we have that 1
β−α ,

2
β−α /∈ Z, and so xj+(α+1)d2 and xj+(α+2)d2 are vertices

of F2 which do not appear in F1. Hence, if the first vertex of F1 is omitted from F2, then
F1 and F2 differ by at least two vertices. �

Corollary 4.7. Let 1 < k < n
2

and n > 6, and suppose F1 and F2 are facets of
vdW (n, k) such that F1 has the largest odd increment and F2 has any other increment.
Then F1 and F2 differ by at least two vertices.

Proof. Notice that if the largest odd increment is 3 or more, the result follows easily
from Lemmas 4.5 and 4.6. Further, notice that for n > 6, vdW (n, 2) will always have a
facet with an increment of 3, since 1 + 3 · 2 = 7. Hence, if there is no facet with increment
3, we have k > 2. Then the largest odd increment will be 1. In this case, Lemma 4.4 gives
that any two facets with different increments will differ by at least two vertices; and in
particular, that a facet with the largest odd increment will differ by at least two vertices
from a facet with any other increment. �

2. Shellability

We now classify the van der Waerden complexes that are shellable. We break our
proof into a number of steps.

Theorem 4.8. For all integers n ≥ 1, the van der Waerden complex vdW (n, k) is
shellable if k = 1 or n

2
≤ k < n.

Proof. First we consider the case k = 1. By the definition of the van der Waerden
complex, we have that

vdW (n, 1) = 〈{xi, xj}|1 ≤ i < j ≤ n〉.
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We now want to find a shelling of these facets. Consider the ordering of the facets defined
by

F1 = {x1, x2} Fn = {x2, x3} . . . Fn(n+1)
2

= {xn−1, xn}.
F2 = {x1, x3} Fn+1 = {x2, x4}
F3 = {x1, x4} Fn+2 = {x2, x5}

...
...

Fn−3 = {x1, xn−2} F2n−4 = {x2, xn−1}
Fn−2 = {x1, xn−1} F2n−3 = {x2, xn}
Fn−1 = {x1, xn}

For each 1 < j < n, we have 〈Fj〉 ∩ 〈F1, F2, . . . , Fj−1〉 = 〈{x1}〉. For each n ≤ j ≤ n(n+1)
2

with Fj = {xp, xq}, we have 〈Fj〉 ∩ 〈F1, F2, . . . , Fj−1〉 = 〈{xp}, {xq}〉. Further, notice
〈{x1}〉 = {{x1},∅} and 〈{xp}, {xq}〉 = {{xp}, {xq},∅}. Since dim(vdW (n, 1)) = 1,
any {xi} is a maximal proper subface. Hence, we have that 〈Fj〉 ∩ 〈F1, F2, . . . , Fj−1〉 is
generated by a set of maximal proper subfaces of Fj. Hence, by Definition 3.1 (1), this
ordering is a shelling. Thus vdW (n, 1) is shellable.

Now suppose n
2
≤ k < n. Since k ≥ n

2
, notice that for d > 1, we have

1 + dk ≥ 1 + 2
n

2
= 1 + n > n

and hence we can have no facet with an increment greater than 1. Hence, we have the
facets

F1 = {x1, x2, x3, . . . , xk−1, xk, xk+1}
F2 = {x2, x3, x4, . . . , xk, xk+1, xk+2}
F3 = {x3, x4, x5, . . . , xk+1, xk+2, xk+3}

...

Fn−k−2 = {xn−k−2, xn−k−1, xk, . . . , xn−4, xn−3, xn−2}
Fn−k−1 = {xn−k−1, xn−k, xn−k+1, . . . , xn−3, xn−2, xn−1}
Fn−k = {xn−k, xn−k+1, xn−k+2, . . . , xn−2, xn−1, xn}.

Using this ordering, notice that

〈F2〉 ∩ 〈F1〉 = 〈{x2, x3, . . . , xk, xk+1}〉
〈F3〉 ∩ 〈F1, F2〉 = 〈{x3, x4, . . . , xk, xk+2}〉

〈F4〉 ∩ 〈F1, F2, F3〉 = 〈{x4, x5, . . . , xk, xk+3}〉
...

〈Fn−k−2〉 ∩ 〈F1, F2, . . . , Fn−k−3〉 = 〈{xn−k−2, xn−k−1, . . . , xn−4, xn−3}〉
〈Fn−k−1〉 ∩ 〈F1, F2, . . . , Fn−k−2〉 = 〈{xn−k−1, xn−k, . . . , xn−3, xn−2}〉
〈Fn−k〉 ∩ 〈F1, F2, . . . , Fn−k−1〉 = 〈{xn−k, xn−k+1, . . . , xn−2, xn−1}〉.

Definition 3.1 (1), this ordering is a shelling and so vdW (n, k) is shellable for n
2
≤ k < n.
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�

While the previous theorem covers most of the cases for which the van der Waerden
complex is shellable, there are two special cases. We consider them now.

Proposition 4.9. For n = 5, 6, vdW (n, 2) is shellable.

Proof. To show vdW (5, 2) and vdW (6, 2) are shellable, we will show that the Alexan-
der duals of their Stanley-Reisner ideals have linear quotients. Using the definition of the
van der Waerden complex, we have

vdW (5, 2) = 〈{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x1, x3, x5}〉, and

vdW (6, 2) = 〈{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x4, x5, x6}, {x1, x3, x5}, {x2, x4, x6}〉.

We label the facets of vdW (5, 2) as F1 through F4, and the facets of vdW (6, 2) as G1

through G6. Using the order given above, notice

〈F2〉 ∩ 〈F1〉 = 〈{x2, x3}〉
〈F3〉 ∩ 〈F1, F2〉 = 〈{x3, x4}〉

〈F4〉 ∩ 〈F1, F2, F3〉 = 〈{x1, x3}, {x3, x5}〉,

and

〈G2〉 ∩ 〈G1〉 = 〈{x2, x3}〉
〈G3〉 ∩ 〈G1, G2〉 = 〈{x3, x4}〉

〈G4〉 ∩ 〈G1, G2, G3〉 = 〈{x4, x5}〉
〈G5〉 ∩ 〈G1, G2, G3, G4〉 = 〈{x1, x3}, {x3, x5}〉

〈G6〉 ∩ 〈G1, G2, G3, G4, G5〉 = 〈{x2, x4}, {x4, x6}〉.

Since dim(vdW (5, 2)) = dim(vdW (6, 2)) = 2, maximal proper subfaces have dimension
1. Since each intersection is generated by a set of faces with dimension 1, we have that
vdW (5, 2) and vdW (6, 2) are shellable by Definition 3.1 (1). �

Corollary 4.10. Let 1 ≤ k < n ≤ 6. Then the simplicial complex vdW (n, k) is
shellable.

Proof. This result follows easily from Theorem 4.8 and Proposition 4.9. For n < 5,
Theorem 4.8 covers vdW (n, k) for all k. For n = 5, 6, Theorem 4.8 gives that vdW (n, k)
is shellable for all k except k = 2; this final case is then taken care of by Proposition
4.9. �

Since we have thoroughly examined those van der Waerden complexes which are
shellable, we now look to those which are not.

Theorem 4.11. Let n > 6 and 1 < k < n
2
. Then vdW (n, k) is not shellable.
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Proof. Recall that the facets of vdW (n, k) are given by arithmetic progressions of
the form xi, xi+d, xi+2d, . . . , xi+kd. When n > 6 and 1 < k < n

2
, we have

1 + 2k < 1 + 2
n

2
≤ 1 + 2

7

2
= 1 + 7 = 8,

i.e., 1 + 2k ≤ 7, and so we will always have facets with increments at least 1 and 2. From
Corollary 4.7, we know that given any two facets where one has the largest odd increment
and one has any other increment, then the two facets will differ by at least two vertices.
Suppose the vertices omitted from F1 and F2 are {xp, xq} and {xr, xt}, respectively. Recall
from Corollary 2.15 that the Stanley-Reisner ideal of the Alexander dual is generated by
monomials related to these facets by mi =

∏
x/∈Fi

x. Then the variables corresponding to
these vertices will not appear in the monomials corresponding to the opposite facets, i.e.,
xpxq - m2 but xpxq | m1, and xrxt - m1 but xrxt | m2. As a result, we have that the
monomial generators of IvdW (n,k)∨ which correspond to these facets will also differ by at
least two variables.

Using this fact, we now look at the Stanley Reisner ideal of the Alexander dual,
IvdW (n,k)∨ . Suppose IvdW (n,k)∨ = 〈m1,m2, . . . ,ms〉, where mi =

∏
x/∈Fi

x as described
above. Now consider any ordering of the monomials, say mj1 ,mj2 , . . . ,mjs , and suppose
mjp is the first monomial of the ordering which corresponds to a facet Fjp with the largest
odd increment.

First, suppose that jp > 1. Recall from Proposition 2.18 that

〈mj1 ,mj2 , . . . ,mjp−1〉 : 〈mjp〉 =

〈
mj1

gcd(mjp ,mj1)
,

mj2

gcd(mjp ,mj2)
, . . . ,

mjp−1

gcd(mjp ,mjp−1)

〉
.

Since mjp is the first occurrence of a monomial corresponding to a facet with the largest
odd increment, we know that it differs from each of the preceding monomials by at least
two variables. That is, for all 1 ≤ i < jp, we have that mi

gcd(mjp ,mi)
is a product of at

least two variables. As a result, the colon ideal 〈mj1 ,mj2 , . . . ,mjp−1〉 : 〈mjp〉 cannot be
generated by a set of variables. Hence, if we have linear quotients, an ordering must begin
with such a monomial.

Now suppose jp = 1. That is, the first monomial of the ordering corresponds to a facet
with the largest odd increment. Suppose that mjq is the first monomial which corresponds
to a facet with any other increment. In this case, for the same reasons as before, we can
see that 〈mj1 ,mj2 , . . . ,mjq−1〉 : 〈mjq〉 cannot be generated by a set of variables, and hence
will also not give linear quotients.

From above, we see that no ordering which includes a monomial corresponding to the
facet with largest odd increment can give linear quotients. Hence IvdW (n,k)∨ does not have
linear quotients for n > 6 and 1 < k < n

2
. As a result, we have that vdW (n, k) is not

shellable. �

The main theorem follows immediately from Theorems 4.8 and 4.11.
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Theorem 4.12. Let 0 < k < n be integers and consider the van der Waerden complex
vdW (n, k) of dimension k on n vertices. Then vdW (n, k) is shellable if and only if

• n ≤ 6, or
• n > 6 and k = 1, or
• n > 6 and n

2
≤ k < n.

We now have a condition which is both necessary and sufficient for the shellability of
the van der Waerden complex given any values of n and k, answering Question 1.5 stated
in the introduction.
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Conclusion

Combining all of the work done through previous chapters, we are finally able to reach
a necessary and sufficient condition for the shellability of the van der Waerden complex.
In this chapter, we state the main theorem and highlight an important implication it gives
as well as some related open questions.

The main theorem of this project is given by combining the results of Theorem 4.8
and Theorem 4.11. We state the theorem again below.

Theorem 4.12. Let 0 < k < n be integers and consider the van der Waerden complex
vdW (n, k) of dimension k on n vertices. Then vdW (n, k) is shellable if and only if

• n ≤ 6, or
• n > 6 and k = 1, or
• n > 6 and n

2
≤ k < n.

As the concept of the van der Waerden complex is still very new, there are several
different areas in which this research could be expanded. One idea, as mentioned in the
introduction as motivation for this research, is to address the implications this result has
in terms of these simplicial complexes being Cohen-Macaulay. Vander Meulen, Van Tuyl,
and Watt [9] studied circulant graphs and determining when they are Cohen-Macaulay
using simplicial complexes. Using this approach to study van der Waerden complexes
could lead to useful conclusions.

An additional topic of interest, which is related to the concept of shellability, is that
of simplicial complexes which are k-shellable. Some simplicial complexes which are not
shellable can still have orderings of their facets which are “nice”. Rahmati-Asghar [8]
defined such complexes as follows.

Definition 5.1. Let ∆ be a d-dimensional pure simplicial complex on {x1, . . . , xn},
and let k ∈ Z with 1 ≤ k ≤ d + 1. An ordering F1, F2, . . . , Fs of the facets of ∆ is called
a k-shelling if for each integer 1 < j ≤ s, Fj = 〈Fj〉 ∩ 〈F1, F2, . . . , Fj−1〉 satisfies the
following two conditions:

(1) Fj is generated by a nonempty set of maximal proper subfaces of Fj, i.e., subfaces
of dimension |Fj| − k − 1 = dim(Fj)− k, and

(2) if Fj has more than one facet then for every two disjoint facets G, G̃ ∈ Fj,
Fj ⊆ G ∪ G̃.

A simplicial complex with a k-shelling is called k-shellable.

28
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Notice that if a simplicial complex is shellable, it is also 1-shellable, and so this notion
is a relaxation of the concept of shellability.

Example 5.2. Recall the simplicial complex given in Example 1.1,

x1

x2

x3

x4

x5

Figure 5.1. Simplicial complex ∆ = 〈{x1, x2, x3}, {x1, x4, x5}〉

Let F1 = {x1, x2, x3}, F2 = {x1, x4, x5}. Then, we have F2 = 〈{x1}〉. This is not a
shelling, since {x1} is not a maximal proper subface of F2. However, it is a 2-shelling
since {x1} ⊂ F2 has dimension dim({x1}) = dim(F2)− 2. Hence, this simplicial complex
is 2-shellable.

Exploring the k-shellability of the van der Waerden complexes which are not shellable
could be an interesting endeavor. Given the results of this research, we know which van
der Waerden complexes are 1-shellable. It could be useful to determine the k-shellability of
these complexes for varying values of k. We speculate that no van der Waerden complexes
are k-shellable, outside of those which have been identified here as having 1-shellings.
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Appendix

The table below indicates whether the van der Waerden complex vdW (n, k) is shellable
for varying values of n and k. A 3 indicates that the complex with a n value corresponding
to its row and k to its column is shellable, and a 7 indicates that this complex is not
shellable. Entries are shaded in grey if vdW (n, k) does not exist for the given values.
This table was filled in as work on this project progressed to help with finding a pattern.

n k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3

3 3 3

4 3 3 3

5 3 3 3 3

6 3 3 3 3 3

7 3 7 7 3 3 3

8 3 7 7 3 3 3 3

9 3 7 7 7 3 3 3 3

10 3 7 7 7 3 3 3 3 3

11 3 7 7 7 7 3 3 3 3 3

12 3 7 7 7 7 3 3 3 3 3 3

13 3 7 7 7 7 7 3 3 3 3 3 3

14 3 7 7 7 7 7 3 3 3 3 3 3 3

15 3 7 7 7 7 7 7 3 3 3 3 3 3 3

16 3 7 7 7 7 7 7 3 3 3 3 3 3 3 3

17 3 7 7 7 7 7 7 3 3 3 3 3 3 3 3 3

Table 1. A table showing which of the van der Waerden complexes are shellable

30
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Code used to generate van der Waerden complexes in Macaulay2 [5]. Generating these
complexes using software was helpful for quickly determining Alexander duals, Stanley-
Reisner ideals, and shellability of certain complexes. This was especially helpful when
looking to confirm or reject a hypothesis of which complexes are shellable.

VDW = (n,k) -> (

l = {};
for i from 1 to n do (

for d from 1 to floor((n-1)/k) do (

if (i+d*k <=n) then (

sublist = {};
for j from 0 to k do (

sublist = append(sublist,x (i+d*j))

);

l = append(l, product sublist));

);

);

return simplicialComplex l;

);
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