
An Introduction to f -Ideals

and their Complements

by

Samuel Budd

A project submitted to the Department of

Mathematics & Statistics in conformity with the requirements

for the degree of Master of Science

McMaster University

Hamilton, Ontario, Canada

copyright c©(2017) Samuel Budd



To Emily,
for her love and support.

i



Abstract

Given a squarefree monomial ideal I, one can associate to I two simplicial complexes,
namely, the facet complex, δFpIq, and the non-face complex, δN pIq. When δFpIq and
δN pIq have the same f -vector, I is said to be an f -ideal. In this project, we summarize
known results about f -ideals, and present our new results. In particular, we perform a
count of f -ideals generated in degree d inside various polynomial rings. We also show
that for a squarefree monomial ideal I, then I is an f -ideal if and only if its complement
Î is an f -ideal, where Î is the generalized Newton complementary dual of I. This result
gives a new characterization of f -ideals.
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CHAPTER 1

Introduction

This project will work within the realm of combinatorics and commutative algebra.
Specifically, we will examine the relationship between squarefree monomial ideals and
simplicial complexes. In particular, given a squarefree monomial ideal I, one can construct
two different simplicial complexes, namely, the facet complex, δFpIq, and the non-face
complex, δN pIq. One can also compute the f -vector of these simplicial complexes, which
counts the number of faces of a given dimension. When the f -vectors for both δFpIq and
δN pIq are the same, then I is said to be an f-ideal. An example of an f -ideal is provided
below:

x4

x1 x2

x3

δF pIq

x4

x1 x2

x3

δN pIq

Figure 1. Facet and non-face complex of the squarefree monomial ideal
I “ xx1x2, x1x4, x2x3y, both of which have the same f -vector.

The goal of this project is to summarize many of the known results about f -ideals,
and to provide some new results on f -ideals. For detailed definitions of terminology used
throughout this chapter, please see Chapters 2, 3, 4, and 5.

1. History of f-Ideals

We begin by providing a brief timeline of the advances in this area of math. To
begin, we make note of the influential work done by Richard P. Stanley and Gerald
Reisner in developing the field of combinatorial commutative algebra in the early 1970’s
[6]. In particular, Stanley-Reisner theory examines the relationship between simplicial
complexes and their associated rings and ideals, and has laid the ground work for many
of the concepts we discuss throughout this paper, especially in the construction of f -ideals.
Some of these results are summarized in the next chapter.

An alternative correspondence between simplicial complexes and squarefree monomial
ideals was first developed by Sara Faridi in 2001 [5]. Her approach generalized the edge
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Chapter 1. Introduction 2

ideal construction of Villarreal from 1990 [12]. In her construction, Faridi introduced the
concept of a facet ideal, as well as a facet complex.

The concept of an f -ideal was introduced by G.Q. Abbasi, S. Ahmad, I. Anwar, and
W.A. Baig in 2012 [1]. In their paper, they classify all f -ideals generated in degree 2.
Not long after this classification, in 2014, I. Anwar, H. Mahmood, M. A. Binyamin, and
M. K. Zafar [3] characterized unmixed f -ideals generated in degree d. Some of the work
done by Abbasi et al. and Anwar et al. is summarized in Chapters 2 and 3.

Moving forward, J. Guo, T. Wu, and Q. Liu [9] proposed a different approach to
characterizing f -ideals of degree 2. In particular, they used the concept of perfect sets
to classify f -ideals. They also examined other interesting properties of f -ideals, such
as counting how many f -ideals exist in a given polynomial ring, and whether or not f -
ideals can be unmixed. This work was done around 2013, although it was not published
until 2016. Building upon results discovered by Guo et al., in 2015, Guo and Wu [10]
expanded upon their work on f -ideals generated in degree 2 to provide some algorithms for
constructing certain types of f -ideals. They also found an example of an f -ideal generated
in mixed degree, a concept we further investigate in this paper. The constructions given
by Guo et al. in [9] are described in Chapter 4.

2. Results

We now summarize some of our new contributions in this project. As part of our
research, we carried out a computer search for f -ideals. One of the main results of our
computations is given below:

Theorem 1.1 (See Thoerem 5.7). Let I Ď R “ krx1, x2, x3, x4s be a squarefree mono-
mial ideal. If I is an f -ideal, then I must have all of its generators in degree d. As
a consequence, there are no f -ideals generated in mixed degree in the polynomial ring
R “ krx1, . . . , xns for n ď 4.

One of our key interests was the relationship between f -ideals and the complementary
ideals they admit. Initially defined by B. Costa and A. Simis [4] as the Newton comple-
mentary dual, we use the construction given by K. Ansaldi, K. Lin, and Y. Shen [2] to
examine the generalized Newton complementary dual of an ideal. In particular, the gen-
eralized Newton complementary dual takes the complement of each generator for a given
ideal I, and yields a complementary generating set. For the purposes of this project, we
were interested in a specific case of the generalized Newton complementary dual of I. More
specifically, given a squarefree monomial ideal I “ xg1, . . . , gpy Ď R “ krx1, . . . , xns with
tg1, . . . , gpu a minimal generating set for I, one can construct a complementary generator
using the following map,

gi
ϕ
ÞÝÑ

x1 ¨ ¨ ¨ xn
gi

“ ĝi.

Using this map, we obtain a minimal generating set for the generalized Newton comple-
mentary dual of I, or simply, the complement of I, denoted by Î. In other words, we
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have that Î “ xĝ1, . . . , ĝpy. Our second main result is the following new classification of
f -ideals:

Theorem 1.2 (See Thoerem 5.19). Let I Ď R “ krx1, . . . , xns be a squarefree mono-

mial ideal. Then I is an f -ideal if and only if Î is an f -ideal.

In order to prove this, we use a result given by Guo et al. in [9], which characterizes
f -ideals based on the number of generators of a certain degree. The main consequence
that arises from this theorem is the idea that f -ideals come in pairs. In fact, using the
theorem above, we are able to expand upon many of the known results simply by looking
at ideals generated in degree n´d rather than in degree d. This becomes useful in counting
f -ideals, as well as constructing different f -ideals generated in both mixed and unmixed
degree.

3. Structure of the Paper

Here, we provide a brief overview of this paper. In Chapter 2, we introduce several
concepts from both combinatorics and commutative algebra. We refer to this chapter for
the remainder of the paper.

Moving forward, Chapter 3 formally introduces the concept of an f -ideal, and provides
some basic properties of such ideals. The chapter concludes with some characterizations
on f -ideals, specifically, an initial characterization for f -ideals generated in degree 2 given
by Abbasi et al. [1], followed by a more general characterization for unmixed f -ideals
generated in degree d, given by Anwar et al. [3].

Chapter 4 then introduces an alternative way to look at f -ideals, using the concept
of perfect sets. A complete and explicit characterizations for f -ideals generated in degree
2 is given. This is followed by a more general theorem, which we will use to prove our
main result, Theorem 5.19. This material is based upon the work done by Guo et al. in
[9] and [10].

Chapter 5 contains our new results. It provides an example of an f -ideal generated
in mixed degree, and also outlines some algorithms for constructing f -ideals of certain
types. We also introduce the complement of an ideal, and prove Theorem 5.19.

We use Chapter 6 to illustrate some of the computational results we have obtained, as
well as some implications from our main result in Chapter 5. We then briefly summarize
our results in Chapter 7 to conclude the paper. An appendix containing our Macaulay2
computer code is also included.



CHAPTER 2

Background Information

In this chapter, we will introduce the relevant background for the results contained in
this paper. We first examine some basic definitions and results regarding combinatorics,
as well as terminology to connect the algebra and combinatorics found in this paper.

1. Combinatorics

In this section, we introduce the necessary background in combinatorics for this
project. We focus on simplicial complexes and some of the terminology required for
understanding these mathematical objects.

Definition 2.1. Given a set S “ tx1, x2, . . . , xnu of n elements, a simplicial complex
∆ over S is a collection of subsets of S, such that,

(i) for any xi P S with i “ 1, 2, . . . , n, then txiu P ∆, and
(ii) for any subset K Ď ∆, all subsets of K are also in ∆.

In other words, a simplicial complex is a subset of the power set of S (i.e., ∆ Ď PpSq)
with some additional conditions.

Example 2.2. Let S “ tx1, x2, x3, x4u. Then an example of a simplicial complex ∆
over S is

∆ “ tH, tx1u, tx2u, tx3u, tx4u, tx1, x2u, tx1, x3u, tx1, x4u, tx3, x4u, tx1, x3, x4uu.

We observe that all elements of S are contained in ∆, as well as all subsets of larger sets.
For example, tx1, x3, x4u P ∆, and therefore tx1, x3u, tx1, x4u, and tx3, x4u are also all in
∆.

Definition 2.3. Given a simplicial complex ∆, we call an element of ∆ a face and
denote it by F . Moreover, for a face F composed of m elements from S, that is |F | “ m,
then the dimension of F is defined as dimpF q “ |F | ´ 1. Sometimes F is called a face of
degree m. We also note that the dimension of H is ´1.

We briefly mention the degree of a face in the above definition; however, we will provide
a formal definition later on. It is now convenient to define the dimension of a simplicial
complex ∆:

Definition 2.4. The dimension of a simplicial complex ∆, denoted dimp∆q, is equal
to the largest dimension of any of the faces of ∆, i.e.,

dimp∆q “ max tdimpF q | F P ∆u.

4



Chapter 2. Background Information 5

Example 2.5. From the previous example, we see that tx1u, tx2u, tx3u, and tx4u all
have dimension 0, tx1, x2u, tx1, x3u, tx1, x4u and tx3, x4u have dimension 1, and tx1, x3, x4u

has dimension 2. Furthermore, we see that the simplicial complex ∆ has dimp∆q “ 2.

Definition 2.6. We say that the face F of ∆ is a maximal face if F Ę G for all
F ‰ G P ∆. In other words, a face F is maximal if all the elements composing F are not
contained in another face of ∆. These maximal faces are known as the facets of ∆.

Example 2.7. Consider the simplicial complex in Example 2.2. We see that tx1, x2u

and tx1, x3, x4u are the two unique facets of ∆. All other faces of ∆ are contained in one
of these two facets.

We note that a simplicial complex can be completely described using its facets. That
is, for facets F1, . . . , Fp P ∆, we write ∆ “ xF1, . . . , Fpy.

2. Commutative Algebra

We also require some background in commutative algebra. We use the following
section to outline some basic concepts required for the rest of the paper. In what follows,
k denotes a field.

Definition 2.8. Given the polynomial ring R “ krx1, . . . , xns, a monomial xa P R is
a product of the indeterminants, i.e., xa “ xa11 x

a2
2 . . . xann with a “ pa1, a2, . . . , anq P Nn. If

a1, . . . , an are all 0 or 1, then we say xa is a squarefree monomial.

Definition 2.9. Given a monomial g “ xa11 x
a2
2 ¨ ¨ ¨ x

an
n P krx1, . . . , xns with ai ě 0 for

i “ 1, 2, . . . , n, we say that g has degree d, denoted by degpgq “ d, if

d “ a1 ` a2 ` . . .` an.

In other words, d is the sum of the powers of the indeterminants composing g (or simply
the number of indeterminants when referring to squarefree monomials).

Definition 2.10. Let I Ď R “ krx1, . . . , xns be a monomial ideal, i.e., an ideal
generated by monomials. The set of squarefree monomials in I is denoted by smpIq,
while the set of squarefree monomials in R is denoted by smpRq. Furthermore, the set of
squarefree monomials of degree d in R (I, respectively) is denoted by smpRqd (smpIqd,
respectively).

A natural next step is to examine the construction of objects using squarefree mono-
mials.

Definition 2.11. Let I “ xg1, . . . , gpy Ď R “ krx1, . . . , xns be an ideal. If g1, . . . , gp
are all squarefree monomials, i.e., the ideal is generated solely by squarefree monomials,
then I is referred to as a squarefree monomial ideal.

Lemma 2.12. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal and let
GpIq “ tg1, g2, . . . , gru be the set of monomials in I that are minimal with respect to
divisibility. Then GpIq is the unique set of minimal monomial generators of I.
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Proof. See Proposition 1.1.6 of [11] for details of this proof. �

With a general definition for degree given above, we will also be interested in a specific
case, that is, when the monomials generating a certain ideal all have degree 2.

Definition 2.13. We define a quadratic squarefree monomial ideal as a squarefree
monomial ideal generated by degree two squarefree monomials. In other words, taking
the product of two distinct indeterminants xi and xj from the polynomial ring R “

krx1, . . . , xns (i.e., xa “ xixj for i, j P t1, 2, . . . , nu and i ‰ j) yields a quadratic squarefree
monomial.

We now explain how a squarefree monomial ideal can be constructed in two different
ways from a simplicial complex ∆.

Definition 2.14. Let ∆ be a simplicial complex with vertex set V “ tx1, . . . , xnu,
and denote the number of facets of ∆ by p.

(i) We define the facet ideal of ∆, denoted by IF , as the ideal generated by the
monomials xi1xi2 ¨ ¨ ¨ ximi

, given that txi1, xi2, . . . , ximi
u is a facet of ∆, for i “

1, 2, . . . , p.
(ii) We define the non-face ideal of ∆ (also known as the Stanley-Reisner ideal of

∆), denoted by IN , as the ideal generated by the monomials xi1xi2 ¨ ¨ ¨ ximi
, given

that txi1, xi2, . . . , ximi
u is not a face of ∆.

For the above definition, recall that mi is the number of squarefree monomials com-
posing a given facet F .

Example 2.15. Returning to Example 2.2, we can construct the facet ideal and the
non-face ideal as follows. First, we construct the facet ideal of ∆. From Example 2.7, we
found the facets of ∆ to be tx1, x2u and tx1, x3, x4u. Therefore we find that

IF “ xx1x2, x1x3x4y.

We now wish to find the non-face ideal of ∆, in which case we need to find all the
non-faces of ∆. To do so, we first calculate the power set of S, the set over which ∆ is
created, which yields

PpSq “ tH, tx1u, tx2u, tx3u, tx4u, tx1, x2u, tx1, x3u, tx1, x4u, tx2, x3u, tx2, x4u,

tx3, x4u, tx1, x2, x3u, tx1, x2, x4u, tx1, x3, x4u, tx2, x3, x4u, tx1, x2, x3, x4uu.

Now, taking the first facet in ∆, namely F1 “ tx1, x2u, we remove from the power set of S
the set corresponding to this facet, as well as all subsets of F1. This removes the elements
tx1, x2u, tx1u, and tx2u, and yields the set

P1pSq “ tH,tx3u, tx4u, tx1, x3u, tx1, x4u, tx2, x3u, tx2, x4u, tx3, x4u,

tx1, x2, x3u, tx1, x2, x4u, tx1, x3, x4u, tx2, x3, x4u, tx1, x2, x3, x4uu.
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Next, we take the second facet, F2 “ tx1, x3, x4u, and once again, remove the set corre-
sponding to F2 from the power set of S, as well as all subsets of F2. This removes the
elements tx1, x3, x4u, tx1, x3u, tx1, x4u, tx3, x4u, tx1u, tx3u, and tx4u, yielding the set

P1,2pSq “ ttx2, x3u, tx2, x4u, tx1, x2, x3u, tx1, x2, x4u, tx2, x3, x4u, tx1, x2, x3, x4uu.

Keeping only the minimal subsets of P1,2pSq, we discard tx1, x2, x3u, tx1, x2, x4u, tx2, x3, x4u,
and tx1, x2, x3, x4u yielding the final set of P1,2pSq

1 “ ttx2, x3u, tx2, x4uu. The squarefree
monomials corresponding to the elements of this set are then taken as a minimal set of
generators for the non-face ideal of ∆, as seen below:

IN “ xx2x3, x2x4y.

With an understanding of how ideals can be generated, we also wish to provide a
definition for the degree of an ideal I, namely;

Definition 2.16. Let I Ď R be a squarefree monomial ideal minimally generated by
squarefree monomials g1, g2, . . . , gp. Then the degree of I, denoted degpIq, is defined as

degpIq “ maxtdegpgiq | i “ 1, 2, . . . , pu.

So far, we have the ability to construct two different squarefree monomial ideals based
on a given simplicial complex ∆. Naturally, we are also interested in being able to proceed
in the reverse direction, that is, we wish to be able to construct a simplicial complex given
a squarefree monomial ideal I. In particular, we will see that this can also be done in two
ways, yielding two different simplicial complexes given one squarefree monomial ideal I.
This is formally defined below:

Definition 2.17. Let I Ď R be a squarefree monomial ideal generated by a minimal
set of squarefree monomials GpIq “ tg1, g2, . . . , gpu Ď I.

(i) We define the facet complex of I, denoted by δFpIq, as the simplicial complex
obtained by constructing facets txi1, xi2, . . . , ximi

u for i “ 1, 2, . . . , p, given that
gi “ xi1xi2 ¨ ¨ ¨ ximi

is a generator of I.
(ii) We define the non-face complex (or the Stanley-Reisner complex) of I, denoted

by δN pIq, as the simplicial complex with vertex set V “ txi | xi R Iu obtained
by constructing faces txi1, xi2, . . . , xisu only if, for gj P GpIq, gj ffl xi1xi2 ¨ ¨ ¨ xis for
all j.

Below, we construct an example of both the facet complex and the non-face complex
of a given squarefree monomial ideal I Ď R “ krx1, x2, x3, x4s.

Example 2.18. Consider the ideal I “ xx1x2, x1x3x4y Ď R “ krx1, x2, x3, x4s. To
construct the facet complex, we simply let each generator of I be a facet of δFpIq. There-
fore we obtain an edge from x1 to x2, as well as a triangle between x1, x3, and x4; this is
illustrated on the left of Figure 1.
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To obtain the non-face complex, we must compute all squarefree monomials in R and
find those that are not contained in I. Recall from above that the set of all squarefree
monomials in R is denoted by smpRq. Thus

smpRq “ t1, x1, x2,x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4,

x1x2x3, x1x2x4, x1x3x4, x2x3x4, x1x2x3x4u.

Considering I is a minimal set of generators, then x1x2 and x1x3x4 are obviously contained
in I, but so are all multiples of x1x2 and x1x3x4. Thus we must find all squarefree
monomials that are not x1x2, x1x3x4, or any multiples of them.

Working with one generator of I at a time, we remove x1x2 and all its multiples,
namely, x1x2x3, x1x2x4, and x1x2x3x4. In other words, δN pIq can therefore not con-
tain tx1, x2u, tx1, x2, x3u, tx1, x2, x4u, and tx1, x2, x3, x4u. Removing the corresponding
monomials from the set smpRq, we obtain

smpRqzsmpxx1x2yq “ t1, x1, x2, x3, x4, x1x3, x1x4, x2x3, x2x4, x3x4, x1x3x4, x2x3x4u.

Taking the next generator of I, we remove x1x3x4 and all of its multiples, which in this case
is only x1x2x3x4. This implies that δN pIq can therefore not contain the faces tx1, x3, x4u

and tx1, x2, x3, x4u. Removing the corresponding monomials from smpRqzsmpxx1x2yq (the
last of which we already removed due to the previous step), we obtain the set

smpRqzsmpxx1x2, x1x3x4yq “ t1, x1, x2, x3, x4, x1x3, x1x4, x2x3, x2x4, x3x4, x2x3x4u.

The set smpRqzsmpxx1x2, x1x3x4yq “ smpRqzsmpIq therefore contains all squarefree mono-
mials of R that are not contained in I, and hence, correspond to the faces of the non-face
complex, δN pIq. We can also reduce this set to contain only maximal faces of δN pIq, thus
yielding a minimal generating set of δN pIq. Consequently, we find that the facets of δN pIq
are tx2, x3, x4u, tx1, x3u and tx1, x4u. The non-face complex of I is pictured on the right
in Figure 1 below.

x4

x1 x2

x3

δF pIq

x4

x1 x2

x3

δN pIq

Figure 1. Facet and non-face complex of the squarefree monomial ideal
I “ xx1x2, x1x3x4y.

We provide one final example illustrating these constructions.
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Example 2.19. We begin by starting with a squarefree monomial ideal

I “ xx1x5, x2x3, x2x5, x1x3x4y Ď R “ krx1, x2, x3, x4, x5s.

We can therefore construct the facet and the non-face complexes in the following way.
For the facet complex, we simply take each generator of I to be a facet of δFpIq, thus
yielding the simplicial complex on the left in Figure 2. As for the non-face complex, we
construct faces of δN pIq only if they correspond to monomials that are not divisible by
any of the generators of I. We find both simplicial complexes below in Figure 2.

x2

x1

x3

x5

x4

δF pIq

x2

x1

x3

x5

x4

δN pIq

Figure 2. Facet and non-face complex of the squarefree monomial ideal
I “ xx1x5, x2x3, x2x5, x1x3x4y.

On the other hand, if we begin with a simplicial complex ∆, we can instead obtain
the facet and the non-face ideal of ∆. In order to compare results, we let ∆ be

x2

x1

x3

x5

x4

Figure 3. Simplicial complex ∆ “ xtx1, x5u, tx2, x3u, tx2, x5u, tx1, x3, x4uy.

In order to obtain the facet ideal, we let each generator of IF correspond to a facet of
∆, thus IF “ xx1x5, x2x3, x2x5, x1x3x4y. As for the non-face ideal, we let the collection of
minimal non-faces of ∆ generate IN , thus yielding IN “ xx1x2, x2x4, x4x5, x3x5y.

It is important to note that the generators of the non-face ideal are not equal to the
faces of the non-face complex when starting from the opposite direction. It is clear from
Figure 2 that the facets of δN pIq are in fact tx1, x2, x4u, tx3, x4, x5u, and tx1, x3u, while
the generators of IN are x1x2, x2x4, x4x5, and x3x5.
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Before we move into the next chapter, we introduce the remaining background in
commutative algebra required for this paper.

Definition 2.20. The support of a monomial xa “ xa11 x
a2
2 . . . xann , denoted by Supppxaq,

is defined as the set of all indeterminants with powers strictly greater than zero, namely

Supppxaq “ txi | ai ą 0u.

Furthermore, the support of an ideal I is defined as the union of the individual supports
of each monomial generator of I. More specifically, let gi for i “ 1, 2, . . . , p be all the
monomials generating I. Then

SupppIq “
p
ď

i“1

Supppgiq.

Definition 2.21. Let k be a field and let R “ krx1, x2, . . . , xns be a polynomial ring
in n variables. Additionally, let xa “ xa11 x

a2
2 . . . xann with a “ pa1, a2, . . . , anq P Nn. Then

we define the graded component of R, denoted Rd, as

Rd “

$

&

%

ÿ

a“pa1,a2,...,anqPNn

rax
a
| ra P k and a1 ` a2 ` ¨ ¨ ¨ ` an “ d

,

.

-

.

Definition 2.22. Let R be a ring and let tRiu be a family of subgroups in R for i in
some index set I. Then we say that the ring R is graded if

(i) R “
À

iPI Ri, and
(ii) for subgroups Rj and Rk, then Rj ¨Rk Ď Rj`k for all j, k P I.

Definition 2.23. Let g1, g2, . . . , gp be squarefree monomials in Rd, the graded com-
ponent of R, for some d ą 0. We call a squarefree monomial ideal I “ xg1, g2, . . . , gpy Ď R
a pure squarefree monomial ideal of degree d when degpg1q “ degpg2q “ ¨ ¨ ¨ “ degpgpq “ d.

We will explore some results regarding the prime decomposition of ideals. This mate-
rial will help with our understanding of the classification of f -ideals, the topic of the next
chapter. To begin, we define a prime ideal.

Definition 2.24. Let R be a ring and let I be an ideal, with I Ĺ R. We say that the
ideal I is a prime ideal (sometimes denoted by I “ p) if, for the element xy P I, then we
have that either x P I, y P I, or x, y P I. In other words, if I is a prime ideal of R, then
for elements x P RzI and y P RzI, then xy P RzI.

Definition 2.25. The set of all prime ideals p of the quotient ring R{I with the
property that there is an injective homomorphism ϕj : R{p Ñ R{I, for j “ 1, . . . , s,
denoted by

AsspR{Iq “ tp1, p2, . . . , psu,

is known as the set of associated primes of R. Sometimes we say p is an associated prime
of I.
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Theorem 2.26. Let I be a squarefree monomial ideal of R “ krx1, x2, . . . , xns with
associated primes p1, p2, . . . , ps, where each associated prime pi is generated by a subset
of tx1, x2, . . . , xnu. Then I can be written as the intersection of its prime ideals, that is,

I “ p1 X p2 X . . .X ps,

where the above notation is known as the primary decomposition of I.

Proof. See Theorem 6.1.4 of [13] for a proof of this theorem. �

Below, we provide a simple method for computing the primary decomposition of a
squarefree monomial ideal.

Algorithm 2.27. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal. If g is
a minimal generator of I, with g “ g1g2 and gcdpg1, g2q “ 1, then we can construct the
primary decomposition of I by repeatedly applying the formula below:

I “ pI ` xg1yq X pI ` xg2yq.

This process yields the primary decomposition of I.

Example 2.28. Let I “ xx1x2, x1x3x4y. We can find a primary decomposition of I as
follows.

I “ xx1x2, x1x3x4y

“ xx1, x1x3x4y X xx2, x1x3x4y “ xx1y X xx2, x1x3x4y

“ xx1y X xx1, x2y X xx2, x3y X xx2, x4y “ xx1y X xx2, x3y X xx2, x4y.

Note that throughout the process we have collapsed the expressions where possible by
either removing duplicates or removing redundant terms, i.e., if Ij Ď Ik, then we say that
Ik is redundant.

Theorem 2.29. Let ∆ be a simplicial complex with vertices x1, x2, . . . , xn. Then the
primary decomposition of the non-face ideal of ∆ is

IN “
č

F

pF

where the intersection is taken over all facets F of ∆, and pF “ xxi | xi R F y, the prime
ideal generated by all xi such that xi R F .

Proof. See Proposition 5.3.10 of [13] for a proof of this theorem. �

Example 2.30. Consider the simplicial complex ∆ from Example 2.2. We can use
the above theorem to obtain the non-face ideal of ∆ using its facets, without needing to
compute the power set over which ∆ is generated. First, recall the simplicial complex
from Example 2.2, pictured below:
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x4

x1 x2

x3

∆

From here, we break ∆ into its facets, and for each facet Fi, we note the elements of
tx1, x2, x3, x4u not found in Fi;

∆ “ x tx1, x3, x4u, tx1, x2u y

Ó Ó

IN “ xx2y X xx3, x4y.

By Theorem 2.29, we therefore have that IN “ xx2y X xx3, x4y “ xx2x3, x2x4y. As
expected, this yields the same non-face ideal as was obtained in Example 2.15.

Another application of Theorem 2.29 allows one to find the facets of the non-face com-
plex without having to compute all squarefree monomials in R, as was done in Example
2.18.

Example 2.31. Considering the ideal from Example 2.28, we found it to have the
following primary decomposition:

I “ xx1x2, x1x3x4y “ xx1y X xx2, x3y X xx2, x4y.

Taking the complement of each of the 3 sets in the above intersection, we obtain 3 other
sets, each of which contain the elements xi if and only if xi is not a generator in the
respective set above:

I “ xx1y X xx2, x3y X xx2, x4y

Ó Ó Ó

δN pIq “ x tx2, x3, x4u, tx1, x4u, tx1, x3u y.

Keeping only the maximal subsets of δN pIq (which in this case are all the subsets), we
obtain δN pIq “ xtx2, x3, x4u, tx1, x4u, tx1, x3uy, the elements of which correspond precisely
to the facets of the non-face complex of I.

Definition 2.32. Let R be a ring and let p1 Ă p2 Ă . . . Ă pn be a chain of prime
ideals in R. The Krull dimension, denoted dimR, is the upper bound on the length of
chains of prime ideals in R.

Definition 2.33. Let I be an ideal and let p be a prime ideal in a ring R.
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(i) The height of a prime ideal p, denoted htppq “ n´ 1, is the upper bound on the
lengths of chains of prime ideals p1 Ă p2 Ă . . . Ă pn where the final prime ideal
is p itself.

(ii) The height of an ideal I, denoted htpIq, is defined as

htpIq “ min t htppq | I Ă p u,

where p ranges over all the prime ideals containing I.

We note that if p is a prime monomial ideal, and hence generated by a subset of
tx1, x2, . . . , xnu, i.e., p “ xxi1, xi2, . . . , xini

y, then the height of p is equal to the number of
variables generating p, that is,

htppq “ ni.

Restricting ourselves to the case of squarefree monomial ideals, we have the following
results regarding height.

Definition 2.34. Let ∆ “ xF1, F2, . . . , Fpy be a simplicial complex. We define the
height of the non-face ideal of ∆, denoted by htpIN q, as

htpIN q “ mintn´ |Fi| | Fi P xF1, F2, . . . , Fpyu,

where |Fi| “ mi, the degree of Fi.

Equivalently, we can say that the height of the non-face ideal IN is the difference
between the number of indeterminants and the degree of the largest facet in ∆.

Definition 2.35. Let I be a squarefree monomial ideal with minimal prime decompo-
sition I “ p1X p2X . . .X pn. We say that I is unmixed when the height of each associated
prime ideal of I is the same, i.e., htpp1q “ htpp2q “ . . . “ htppnq.

Lemma 2.36. Let I be a squarefree monomial ideal. Then I is unmixed if and only if
δN pIq is pure.

Proof. Let I be a squarefree monomial ideal. We know I is unmixed if and only if
the height of each associated prime of I is the same. But by Theorem 2.29, the height of
each associated prime is the same if and only if each facet of the non-face complex has
the same dimension, and this occurs if and only if δN pIq is pure, therefore we obtain the
result we are looking for. �



CHAPTER 3

f-Ideals

In this chapter, we introduce f -ideals. In Section 1, we provide a formal definition for
f -ideals, and follow this with several useful properties of f -ideals in Section 2. Moving
into the the classification of f -ideals, Section 3 summarizes the work done by Abbasi et
al. [1] in classifying f -ideals generated in degree 2, and further outlines a more general
characterization of unmixed f -ideals generated in degree d, given by Anwar et al. [3].

1. Introduction to f-Ideals

We use this section to formally define an f -ideal. We also provide a simple example
of an f -ideal generated in degree 2.

Definition 3.1. Let ∆ be a d-dimensional simplicial complex over n vertices. We
define the f-vector of the simplicial complex ∆, as

fp∆q “ pf0, f1, . . . , fdq,

a pd` 1q-tuple where each fi is the number of faces of dimension i in ∆.

Example 3.2. Let ∆ be the simplicial complex below:

x4

x1 x2

x3

Then the f -vector of the simplicial complex ∆ is fp∆q “ p4, 5, 1q. This is because there
are precisely 4 faces of dimension 0, (i.e., f0 “ 4), 5 faces of dimension 1 (i.e., f1 “ 5),
and 1 face of dimension 2 (i.e., f2 “ 1).

Lemma 3.3. Let I “ xg1, g2, . . . , gpy Ď R “ krx1, . . . , xns be a squarefree monomial
ideal generated in degree d, where g1, g2, . . . , gp form a minimal generating set for I. Then
fd´1pδFpIqq “ p.

Proof. Let I “ xg1, g2, . . . , gpy be a squarefree monomial ideal generated in degree
d where g1, g2, . . . , gp form a minimal generating set for I. By definition, it is clear that
each facet of δFpIq will have dimension d ´ 1, and since there are exactly p generators

14
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composing the minimal generating set, then there will be precisely p facets of dimension
d´ 1. Thus fd´1pδFpIqq “ p. �

We now describe the concept of an f -ideal. The definition of an f -ideal was originally
defined by Abbasi et al. [1].

Definition 3.4. Let I Ď R be a squarefree monomial ideal, and let δFpIq and δN pIq
be the facet and non-face complex, respectively, of I. Then I is said to be an f-ideal if
the f -vectors of both δFpIq and δN pIq are the same.

Below, we provide an example to illustrate the concept of an f -ideal.

Example 3.5. Let I “ xx1x2, x1x4, x2x3y Ď R “ krx1, x2, x3, x4s be an ideal and
consider its facet and non-face complex below.

x4

x1 x2

x3

δF pIq

x4

x1 x2

x3

δN pIq

Figure 1. Facet and non-face complex of the squarefree monomial ideal
I “ xx1x2, x1x4, x2x3y.

From above, the f -vectors of the facet and non-face complex of I are fpδFpIqq “ p4, 3q
and fpδN pIqq “ p4, 3q, respectively. Since fpδFpIqq “ fpδN pIqq, I is an f -ideal.

2. Constructing f-Ideals

Before characterizing f -ideals, we state several lemmas that will be useful in proving
some of the main results of this chapter.

Lemma 3.6. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal. Then

dimpδFpIqq “ dimpδN pIqq

if and only if htpIq ` degpIq “ n.

Proof. Observe that dimpδFpIqq “ maxtdimpF q|F P δFpIqu, and dimpF q “ degpF q´
1. But degpIq “ maxtdegpFiq|Fi is a facet of δFpIqu, thus dimpδFpIqq “ degpIq ´ 1.

By Theorem 2.29, we know that the largest dimension of a facet in δN pIq must be
generated by a monomial of degree n´ htpIq therefore dimpδN pIqq “ n´ htpIq´ 1. From
this, it is clear that dimpδFpIqq “ dimpδN pIqq if and only if n ´ htpIq ´ 1 “ degpIq ´ 1
and thus n “ degpIq ` htpIq. �
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Lemma 3.7. Let I “ xg1, g2, . . . , gpy Ď R “ krx1, . . . , xns be a pure squarefree mono-
mial ideal generated in degree d. Then

ˆ

n

d

˙

“ fd´1pδFpIqq ` fd´1pδN pIqq.

Proof. Let I be a squarefree monomial ideal generated by monomials tg1, g2, . . . , gpu,
with degpgiq “ d for i “ 1, . . . , p. Furthermore, note that there are precisely

`

n
d

˘

ways
to construct faces of dimension d ´ 1 for a simplicial complex over n vertices. Since
I is a pure squarefree monomial ideal in degree d, then the faces of dimension d ´ 1
not in δFpIq must lie in δN pIq, and thus

`

n
d

˘

´ fd´1pδFpIqq “ fd´1pδN pIqq. Therefore
`

n
d

˘

“ fd´1pδFpIqq ` fd´1pδN pIqq. �

Lemma 3.8. Let I “ xg1, g2, . . . , gpy Ď R “ krx1, . . . , xns be a pure squarefree mono-
mial ideal generated in degree d. If F P δFpIq is a face with dimension less than d ´ 1,
the face F must also be in δN pIq. Consequently,

fipδFpIqq ď fipδN pIqq for all i ă d´ 1.

Proof. Let I “ xg1, g2, . . . , gpy be a pure squarefree monomial ideal generated in
degree d with tg1, g2, . . . , gpu a minimal set of generators. After relabelling, let F “

tx1, . . . , xru be a face of δFpIq with dimension less than d ´ 1. Furthermore, let m “

x1x2 ¨ ¨ ¨ xr be the squarefree monomial corresponding to the face F . Then if F is a face of
δFpIq, by definition, m divides some monomial gi in I, for some i P 1, 2, . . . , p. Suppose
now that F R δN pIq. Then by definition, if F R δN pIq, then m “ x1x2 ¨ ¨ ¨ xr P I. But from
above, F is a face of dimension strictly less than d ´ 1, and hence m is a monomial of
degree strictly less than d. Since I is a squarefree monomial generated in degree d, then
m “ x1x2 ¨ ¨ ¨ xr P I yields a contradiction since x1x2 ¨ ¨ ¨ xr is a monomial in I of degree
smaller than d, thus completing the proof. �

Lemma 3.9. Let I “ xg1, g2, . . . , gpy Ď R “ krx1, . . . , xns be an f -ideal generated in
degree d. Then

fd´2pδFpIqq “

ˆ

n

d´ 1

˙

.

Proof. Let I “ xg1, g2, . . . , gpy Ď R be an f -ideal generated in degree d. Since I
is generated in degree d, there are no squarefree monomials in I of degree d ´ 1. Thus,
Lemma 3.8 implies that all faces of dimension d ´ 2 will be contained in δN pIq. Since
there are

`

n
d´1

˘

ways to choose a face of dimension d´2, then we have that fd´2pδN pIqq “
`

n
d´1

˘

. Since I is an f -ideal, the f -vectors of δFpIq and δN pIq are equivalent, and hence

fd´2pδFpIqq “ fd´2pδN pIqq “
`

n
d´1

˘

, therefore completing the proof. �

3. Classification of f-Ideals

We use this section to state and prove a classification of unmixed f -ideals. We begin
by examining the case in which the ideal I is generated in degree two, originally proven
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by Abbasi et al. [1]. We follow this discussion with a more general result obtained by
Anwar et al. [3].

Theorem 3.10 (Abbasi, Ahmad, Anwar & Baig [1], Theorem 3.5). Let I “ xg1, . . . , gpy
be a squarefree monomial ideal generated in degree 2 inside krx1, . . . , xns. Then I is an
f -ideal if and only if

(i) I is unmixed with htpIq “ n´ 2,
(ii)

`

n
2

˘

” 0 pmod 2q, and

(iii) p “ 1
2

`

n
2

˘

.

Example 3.11. Let k be a field and let R “ krx1, x2, x3, x4, x5s. Then the (quadratic)
squarefree monomial ideal I “ xx1x2, x2x5, x3x4, x3x5, x4x5y is an f -ideal.

x2

x1

x3

x5

x4

δF pIq

x2

x1

x3

x5

x4

δN pIq

Figure 2. Facet and non-face complex of the squarefree monomial ideal
I “ xx1x2, x2x5, x3x4, x3x5, x4x5y.

From the above diagram, we can clearly see that fpδFpIqq “ p5, 5q and fpδN pIqq “
p5, 5q, as both simplicial complexes have 5 faces of dimension 0 (i.e., the vertices), and 5
faces of dimension 1 (i.e., the edges). Furthermore, we see that all conditions of Theorem
3.10 are met. Computing the prime decomposition of I, we find that

I “ xx1x2, x2x5, x3x4, x3x5, x4x5y

“ xx1, x3, x5y X xx1, x4, x5y X xx2, x3, x4y X xx2, x3, x5y X xx2, x4, x5y.

It is clear from above that the height of each prime ideal is 3, and thus the same, therefore
the ideal I is unmixed. This agrees with the fact that htpIq “ 5 ´ 2 “ 3. Furthermore,
`

5
2

˘

“ 10 ” 0 pmod 2q, and lastly p “ 1
2

`

5
2

˘

“ 5, thus satisfying all conditions of Theorem
3.10.

In [3], Anwar et. al investigate how to classify f -ideals generated in degree greater
than 2. Anwar et al. first provide necessary but not sufficient conditions for squarefree
monomial ideals generated in degree greater than or equal to 2. In fact, it is simply an
extension of Theorem 3.10, where the conditions are amended to a slightly more general
setting. We see their initial theorem below:
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Theorem 3.12 (Anwar, Mahmood, Binyamin & Zafar [3], Theorem 3.3). Let I “
xg1, g2, . . . , gpy Ď R “ krx1, x2, . . . , xns be a squarefree monomial ideal generated in degree
d. If I is an f -ideal, then

(i) I is unmixed with htpIq “ n´ d,
(ii)

`

n
d

˘

” 0 pmod 2q, and

(iii) p “ 1
2

`

n
d

˘

.

In the next example, we find a squarefree monomial ideal with degree higher than 2
that satisfies the necessary conditions of Theorem 3.12 but fails to be an f -ideal.

Example 3.13. Let R “ krx1, x2, x3, x4, x5s be a polynomial ring in five variables and
take I “ xx1x2x3, x1x2x4, x2x3x5, x2x4x5, x3x4x5y Ď R. We can check that I satisfies (i),
(ii), and (iii) of Theorem 3.12. However we find that I is not an f -ideal. First, observe
that

I “ xx1x2x3, x1x2x4, x2x3x5, x2x4x5, x3x4x5y

“ xx1, x5y X xx2, x3y X xx2, x4y X xx2, x5y X xx3, x4y.

Therefore the height of each prime ideal is equal to 2 which agrees with I being unmixed
with htpIq “ n´ d “ 5´ 3 “ 2. Furthermore, we have that

`

n
d

˘

“
`

5
3

˘

“ 10 ” 0 pmod 2q,

and p “ 1
2

`

5
3

˘

“ 5, and thus, we find that all conditions are met. On the other hand, we
can construct the facet and non-face complex of I (as seen in Figure 3) and compute their
respective f -vectors.

x2

x1

x3

x5

x4

δF pIq

x2

x1

x3

x5

x4

δN pIq

Figure 3. Facet and non-face complex of the squarefree monomial ideal
I “ xx1x2x3, x1x2x4, x2x3x5, x2x4x5, x3x4x5y.

From the simplicial complexes in Figure 3, we find that fpδFpIqq “ p5, 9, 5q and
fpδN pIqq “ p5, 10, 5q. We can conclude from this that I is not an f -ideal, even though
the conditions of Theorem 3.12 satisfied.

Now, we introduce the main result on f -ideals for any degree d.

Theorem 3.14 (Anwar, Mahmood, Binyamin & Zafar [3], Theorem 3.8). Let I “
xg1, g2, . . . , gpy Ď R “ krx1, x2, . . . , xns be a pure squarefree monomial ideal generated in
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degree d. Then I is an unmixed f -ideal if and only if each of the following conditions are
satisfied.

(i) htpIq “ n´ d,
(ii)

`

n
d

˘

” 0 pmod 2q,

(iii) |AsspR{Iq| “ p “ 1
2

`

n
d

˘

, and

(iv) fd´2pδFpIqq “
`

n
d´1

˘

.

Proof. (ñ) We will begin by proving the forward direction and assuming that I is a
squarefree unmixed f -ideal generated in degree d. Since we have that I is an unmixed f -
ideal with degpIq “ d, the simplicial complexes δFpIq and δN pIq have the same dimension.
By Lemma 3.6, we have that dimpδFpIqq “ dimpδN pIqq implies that htpIq ` degpIq “ n.
Since degpIq “ d, we can rearrange to obtain htpIq “ n ´ d, thus proving part piq. Now,
since I is a squarefree monomial ideal generated in degree d, then by Lemma 3.7, we
have

`

n
d

˘

“ fd´1pδFpIqq ` fd´1pδN pIqq. But by Lemma 3.3 we have that fd´1pδFpIqq “ p,

and thus
`

n
d

˘

“ p ` fd´1pδN pIqq. Since I is an f -ideal, we must have that fd´1pδFpIqq “

fd´1pδN pIqq, and thus
`

n
d

˘

“ 2p. Rearranging we obtain p “ 1
2

`

n
d

˘

. Additionally, since I is
an f -ideal generated in degree d and fd´1pδFpIqq “ p, then both δFpIq and δN pIq have p
facets. But by Theorem 2.29, we know that the number of facets of δN pIq is equal to the
number of associated primes of R{I, that is, p “ |AsspR{Iq|, thus proving part piiiq. From
the previous argument, we can also see that

`

n
d

˘

“ 2p ” 0 pmod 2q, therefore satisfying

piiq. Lastly, since I is an f -ideal generated in degree d, the statement fd´2pδFpIqq “
`

n
d´1

˘

follows directly from Lemma 3.9.

(ð) We will now prove the converse. We begin by assuming that I is a pure squarefree
monomial ideal generated in degree d that satisfies conditions piq through pivq. First, we
note that fd´2pδFpIqq “

`

n
d´1

˘

. In other words, we have that there are exactly
`

n
d´1

˘

faces
of dimension d ´ 2 in δFpIq. But since we are choosing all faces of degree d ´ 1, the
simplicial complex δFpIq must contain all faces of dimension d´ 2. But if δFpIq contains
all faces of dimension d´2, then it must also contain all subfaces of those faces, and hence
δFpIq must contain all faces of dimension less than d ´ 2. This can be continued until
we reach subfaces of dimension d ´ d “ 0, where all these subfaces are still contained in
δFpIq. But for any i, there are

`

n
i`1

˘

many ways to choose a subset of degree i`1 elements

from n, and hence the maximal number of faces of dimension i must be
`

n
i`1

˘

. On the

other hand, we know that there are exactly
`

n
i`1

˘

ways to choose i`1 indeterminants from

x1, x2, . . . , xn, which therefore implies that fipδN pIqq “
`

n
i`1

˘

. Using these two facts and

applying Lemma 3.8, we have that
`

n
i`1

˘

“ fipδFpIqq ď fipδN pIqq “
`

n
i`1

˘

which implies
that fipδFpIqq “ fipδN pIqq for i ď d ´ 2. From above we have that each fi of fp∆q is
equivalent for both fipδFpIqq and fipδN pIqq for i ď d´ 2.

We know from Lemma 3.3 however, that fd´1pδFpIqq “ p. But by piiiq, we know
p “ 1

2

`

n
d

˘

, and by Lemma 3.7, we have
`

n
d

˘

“ fd´1pδFpIqq` fd´1pδN pIqq, thus rearranging,
we find 2fd´1pδFpIqq “ fd´1pδFpIqq`fd´1pδN pIqq and therefore fd´1pδFpIqq “ fd´1pδN pIqq.
From this we conclude that I is an f -ideal.
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We now show that I is unmixed. By our hypothesis, we know that |AsspR{Iq| “ p.
This implies that we have prime ideals tp1, p2, . . . , ppu such that I “ p1 X p2 X . . . X pp.
Now suppose I is not unmixed. Since htpIq “ minthtppiq|I “ p1 X p2 X . . . X ppu, then
there exists a pi P tp1, p2, . . . , ppu for some i P t1, 2 . . . , pu such that htppiq ą htpIq. From
our hypothesis, we know htpIq “ n ´ d, thus n ´ d ă htppiq and hence n ´ pd ´ 1q “
n´ d` 1 ď htppiq.

By Theorem 2.29, there is a one-to-one correspondence between the associated primes
of I and the facets of the non-face complex of I, and hence δN pIq has precisely p facets
(where each facet is built from the complement of each pj for j “ 1, 2, . . . , p). We also
see that the facet obtained from the associated prime pi has dimension less than or
equal to d ´ 2. But then fd´1pδN pIqq ď p ´ 1 since one of the facets has already been
created from pi and the remaining p ´ 1 may have dimension d ´ 1. By Lemma 3.3,
we have fd´1pδFpIqq “ p and from above we know fd´1pδN pIqq ď p ´ 1. Using the fact
that fd´1pδFpIqq “ fd´1pδN pIqq we find p “ fd´1pδFpIqq “ fd´1pδN pIqq ď p ´ 1. But
this implies p ď p ´ 1, a contradiction. From this, we can therefore conclude that I is
unmixed, and hence I is an unmixed f -ideal. �



CHAPTER 4

A Parallel Approach to f-Ideals

As mentioned in the introduction, Guo, Wu, and Liu provide an alternative method
for studying f -ideals. In this chapter, we highlight the main ideas of [9].

As discussed in Chapter 2, one can construct a facet and a non-face complex from
a given squarefree monomial ideal I. Essentially the same as the definitions provided
earlier, Guo et al. [9] make a clear reference to the bijection between smpRq, the set of
squarefree monomials in R, and 2rns, with rns “ t1, 2, . . . , nu. In particular, the natural
bijection σ : smpRq ÝÑ 2rns has the form

xi1xi2 ¨ ¨ ¨ xik
σ
ÞÝÑ ti1, i2, . . . , iku,

where squarefree monomials are simply transformed into faces of a simplicial complex. In
particular, the facet and the non-face complex are defined below using this alternative
terminology:

Definition 4.1. Let I “ xg1, . . . , gpy Ď R “ krx1, . . . , xns be a squarefree monomial
ideal with g1, . . . , gp a minimal generating set of I. Then the facet complex of I is defined
as

δFpIq “ xσpgiq | i “ 1, 2, . . . , py,

while the non-face complex of I is defined as

δN pIq “ tσpgq | g P smpRqzsmpIqu.

1. Perfect Sets

The above definitions are by no means drastically different from those in Chapter 2.
However, we now introduce material that begins to differ from the constructions we have
already presented.

Definition 4.2. Let S be a set of squarefree monomials in R “ krx1, . . . , xns. Then
the set

\pSq “ tgxi | g P S, xi - g, 1 ď i ď nu

is called the upper generated set of S, and the set

[pSq “ tg{xi | g P S, xi|g, and g{xi ‰ 1u

is called the lower cover set of S. Similarly, when applying \ and [ multiple times, we
define \kpSq “ \p\k´1pSqq and [kpSq “ [p[k´1pSqq. Moreover, \8pSq “

Ť8

i“1\
ipSq

and [8pSq “
Ť8

i“1[
ipSq.

21
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Definition 4.3. Let R “ krx1, . . . , xns and let S Ď smpRqd. If \pSq “ smpRqd`1,
then S is said to be upper perfect. In contrast, if [pSq “ smpRqd´1, then S is said to
be lower perfect. If a set S is both upper and lower perfect, then S is said to be pn, dqth

perfect.

Example 4.4. Let R “ krx1, x2, x3, x4, x5s and consider the following subsets of
smpRq2:

S1 “ tx1x2, x2x3, x2x4, x4x5u S2 “ tx1x2, x1x3, x1x5, x2x3, x2x5, x3x5u.

Furthermore, note that smpRq1 “ tx1, x2, x3, x4, x5u and

smpRq3 “ tx1x2x3, x1x2x4, x1x2x5, x1x3x4, x1x3x5,

x1x4x5, x2x3x4, x2x3x5, x2x4x5, x3x4x5u.

Clearly, [pS1q “ tx1, x2, x3, x4, x4u “ smpRq1 but x1x3x5 R \pS1q, thus \pS1q ‰

smpRq3, and hence S1 is lower perfect, but not upper perfect. On the other hand, \pS2q

is clearly equal to smpRq3 but x4 R [pS2q, therefore [pS2q ‰ smpRq1. Hence S2 is upper
perfect, but not lower perfect.

Example 4.5. Consider the set S “ tx1x3, x1x5, x2x4, x3x5u Ď smpRq2 in the polyno-
mial ring R “ krx1, x2, x3, x4, x5s. By computing the upper generated set and the lower
cover set, we find that \pSq “ smpRq3 and [pSq “ smpRq1, and therefore S is p5, 2qth

perfect, or simply, perfect.

A helpful theorem which allows one to determine whether an ideal is an f -ideal is
given below.

Theorem 4.6 (J. Guo, T. Wu, Q. Liu, [9], Theorem 2.3). Let I Ď R “ krx1, . . . , xns
be a squarefree monomial ideal generated in degree d with minimal generating set GpIq “
tg1, . . . , gpu. Then I is an f -ideal if and only if GpIq is pn, dqth perfect and |GpIq| “ 1

2

`

n
d

˘

.

In addition, we also have an algorithm for finding all perfect subsets of degree d in the
polynomial ring krx1, . . . , xns.

Algorithm 4.7. Let R “ krx1, . . . , xns and let smpRqd be the set of squarefree mono-
mials in R generated in degree d. Then the following procedure yields all f -ideals generated
in degree d in R.

(1) List elements of smpRqd, smpRqd´1, and smpRqd`1

(2) For each S Ď smpRqd, if |S| “ 1
2

`

n
d

˘

, then go to step 3.
(3) Compute \pSq and [pSq and check if \pSq “ smpRqd`1 and [pSq “ smpRqd´1.

Ultimately, this provides a brute force method for computing all f -ideals generated
in degree d within a certain polynomial ring. Nevertheless, this process becomes arduous
and inefficient for large n and d.
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Proposition 4.8. Let I Ď R “ krx1, . . . , xns be an f -ideal generated in degree d, with
minimal generating set GpIq “ tg1, . . . , gpu. Then I is unmixed if and only if smpRqdzGpIq
is lower perfect.

In relation to a complete classification of f -ideals generated in degree 2, Abbasi et al.
provide a characterization in [1]. However, Guo et al. [9] expand upon this by completely
and explicitly classifying all f -ideals generated in degree 2. Their classification is breifly
described in the following section.

2. Structure of all Quadratic f-Ideals

As mentioned above, we use this section to summarize the results obtained by Guo et
al. [9] on the characterization of all f -ideals generated in degree two, that is, all quadratic
f -ideals. In particular, the following results on quadratic f -ideals are found in [9].

Proposition 4.9. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal generated
in degree 2. If I is an f -ideal, then I is unmixed.

Proof. See Proposition 5.2 of [9] for details on this proof. �

Definition 4.10. Let S be a subset of rns “ t1, 2, . . . , nu, with 1 ă |S| ă n´ 1, and
set

WS “ txixj | i, j P S or i, j P S̄u, where S̄ “ rnszS.

For an f -ideal I, generated in degree 2 with generating set GpIq, if there exists an
S Ď rns such that WS Ď GpIq, then I is called a quadratic f -ideal of r type, where
r “ minp|S|, |S̄|q. The set of all f -ideals of r type is denoted by Wr.

Theorem 4.11 (J. Guo, T. Wu, Q. Liu, [9], Theorem 4.7). Let R “ krx1, . . . , xns be
a polynomial ring and let V pn, 2q be the set of all f -ideals generated in degree 2. Then

V pn, 2q “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Ť

0ďiď
?
k

W2k´i if n “ 4k;

Ť

0ďiď
?
1`4k´1

2

W2k´i if n “ 4k ` 1, k ‰ 1;

W2 Y C5 if n “ 5;

H if n “ 4k ` 2 or n “ 4k ` 3.

where Wr represents the set of all f -ideals of r type, and C5 represents the cycle graph on
five vertices.

In addition to the classification of f -ideals generated in degree 2, Guo et al. [9] also
counted the number of quadratic f -ideals in any polynomial ring krx1, . . . , xns. This is
given as the following theorem:
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Theorem 4.12 (J. Guo, T. Wu, Q. Liu, [9], Proposition 4.10). Let R “ krx1, . . . , xns
be a polynomial ring and let V pn, 2q be the set of all f -ideals generated in degree 2 in R.
Then the number of f -ideals generated in degree 2 for a given n, that is, |V pn, 2q|, is given
by

|V pn, 2q| “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1
2

`

4k
2k

˘`

4k2

k

˘

`
ř

1ďiď
?
k

`

4k
2k´i

˘`

4k2´i2

k´i2

˘

if n “ 4k;

ř

0ďiď
?
1`4k´1

2

`

4k`1
2k´i

˘`

4k2`2k´i´i2

k´i´i2

˘

if n “ 4k ` 1, k ‰ 1;

72 if n “ 5;

0 if n “ 4k ` 2 or n “ 4k ` 3.

3. Unmixed f-Ideals Generated in Degree d

Guo et al. also provide a characterization which allows one to determine if an unmixed
squarefree monomial ideal I generated in degree d is an f -ideal. We use this section to
outline this result, as well as mention some facts that we will need for this characterization.

Definition 4.13. Let ∆ be a simplicial complex over S “ tx1, . . . , xnu. If every
minimal non-face of ∆ has dimension d´ 1, then ∆ is said to be a d-flag complex.

Definition 4.14. Let ∆ be a simplicial complex over S “ tx1, . . . , xnu. Then the set

∆_
“ ttx1, . . . , xnuzF | F R ∆u

is called the Alexander dual of ∆.

Example 4.15. Consider the simplicial complex ∆ “ xtx1, x2u, tx1, x4u, tx2, x3uy. As
seen in Example 3.5, we have that the minimal non-faces of ∆ are tx1, x3u, tx2, x4u, and
tx3, x4u.

Letting N∆ denote the set of minimal non-faces of ∆, we compute the facets of the
Alexander dual below:

∆ “ x tx1, x2u, tx1, x4u, tx2, x3u y,

Ó

N∆ “ t tx1, x3u, tx2, x4u, tx3, x4u u,

Ó Ó Ó

∆_
“ x tx2, x4u, tx1, x3u, tx1, x2u y.

From the above computations, we obtain the following simplicial complexes:
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x4

x1 x2

x3

∆

x4

x1 x2

x3

∆_

Figure 1. Simplicial complex ∆ “ xtx1, x2u, tx1, x4u, tx2, x3uy and its
Alexander dual ∆_.

We also observe that every minimal non-face of the simplicial complex ∆ has dimension
1, thus we have that ∆ is a 2-flag complex.

We can now state the main classification on unmixed f -ideals generated in degree d,
given by Guo et al. [10]:

Theorem 4.16 (J. Guo, T. Wu, [10], Proposition 2.1). Let I Ď R “ krx1, . . . , xns
be a squarefree monomial ideal generated in degree d with minimal generating set GpIq “
tg1, . . . , gpu. Then I is an unmixed f -ideal if and only if I satisfies the following condi-
tions:

(i) |GpIq| “ p “ 1
2

`

n
d

˘

,
(ii) dim δFpIq

_ “ n´ d´ 1, and
(iii) xσphq | h P smpRqdzGpIqy is a d-flag complex.

Example 4.17. Consider the squarefree monomial ideal I “ xx1x2, x2x3, x1x4y Ď R “
krx1, x2, x3, x4s from Example 3.5. We can use Theorem 4.16 to verify that I is an f -ideal.

We observe that |GpIq| “ 3, and compute 1
2

`

4
2

˘

“ 3, thus condition piq holds. Since
δFpIq “ xtx1, x2u, tx1, x4u, tx2, x3uy, then we know from Example 4.15 that δFpIq

_ “

xtx1, x2u, tx1, x3u, tx2, x4uy, and hence dim δFpIq
_ “ 1. Computing n´d´1 “ 4´2´1 “ 1,

we see that condition piiq also holds. Lastly, we also know from Example 4.15 that

xσphq | h P smpRqdzGpIqy “ xtx1, x3u, tx2, x4u, tx3, x4uy.

Hence, xσphq | h P smpRqdzGpIqy is a 2-flag complex. Since d “ 2, condition piiiq holds,
and I is an f -ideal.

4. Generalizations for f-Ideals

So far in this chapter, we have focused on the case that I is generated in degree
d. We now examine some of the results seen in [9], which allow one to determine if a
squarefree monomial ideal generated in mixed degree is an f -ideal. We begin by providing
a necessary and sufficient condition for a squarefree monomial ideal generated in mixed
degree to be an f -ideal.
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Proposition 4.18. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal with

minimal generating set GpIq “
Ťk
i“1GdipIq, where GdipIq represents the set of minimal

generators of degree di. Then I is an f -ideal if and only if the following conditions hold:

(i) For each positive l P td1, . . . , dku,

|GlpIq| “
1

2

˜

ˆ

n

l

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

p[
di´lpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diăl

p\
l´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

(ii) For each positive l R td1, . . . , dku,
ď

diąl

[
di´lpGdipIqq “ smpRqlz

ď

diăl

\
l´dipGdipIqq.

Proof. See Proposition 6.1 of [8] for details on this proof. �

In particular, the above proposition can be simplified, as we show in Theorem 4.20
below. In order to prove this theorem, we state a lemma that we will use.

Lemma 4.19. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal. Then

(i) σp[8pGpIqqq “ δFpIq X δN pIq,
(ii) σp\8pGpIqqq X δFpIq “ H and σp\8pGpIqqq X δN pIq “ H.

Proof. piq LetGpIq “
Ťk
j“1GdjpIq and let F P σp[8pGpIqqq. By definition, [8pGpIqq

is the set of all squarefree monomials
Ť8

i“1[
ip
Ťk
j“1GdjpIqq. This implies that σp[8pGpIqqq

will include all faces of δFpIq, except for its facets. But since δFpIq and δN pIq share all
faces of dimension d1 ´ 2, . . . , dk ´ 2, then σp[8pGpIqqq Ď δFpIq X δN pIq

Now, let F P δFpIq X δN pIq be a face corresponding to the monomial m. Then there
must be a minimal generator g P GpIq such that m strictly divides g. Because of this,
we must have that m P [8pGpIqq. Since m corresponds to the face F , then we have that
F P σp[8pGpIqqq. The result follows, and hence δFpIqXδN pIq Ď σp[8pGpIqqq. Therefore
σp[8pGpIqqq “ δFpIq X δN pIq.

piiq Let GpIq “
Ťk
j“1GdjpIq be a minimal generating set of I. Then σp\8pGpIqqq is

the set of faces generated by monomials in
Ť8

i“1\
ip
Ťk
j“1GdjpIqq. But these monomials

have degrees no less than d1 ` 1, d2 ` 1, . . . , dk ` 1, respectively. Since GpIq is a minimal
generating set, we have that any face in σp\8pGpIqqq will not be contained in δFpIq.
Hence, σp\8pGpIqqq X δFpIq “ H.

Now, suppose F P σp\8pGpIqqq X δN pIq. Since F P σp\8pGpIqqq, there exists a
monomial g P GpIq and a squarefree monomial m such that gcdpg,mq “ 1 and σpgmq “
F . But gm P smpIq, thus, by definition, σpgmq R δN pIq. But this implies that F R

δN pIq, and hence contradicts F P σp\8pGpIqqq X δN pIq. We therefore conclude that
σp\8pGpIqqq X δN pIq “ H. �
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Theorem 4.20 (J. Guo, T. Wu, Q. Liu, [9], Theorem 7.2). Let I Ď R “ krx1, . . . , xns

be a squarefree monomial ideal with minimal generating set GpIq “
Ťk
i“1GdipIq. Then I

is an f -ideal if and only if, for each l P t1, 2, . . . , nu,

|GlpIq| “
1

2

˜

ˆ

n

l

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

p[
di´lpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diăl

p\
l´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

Proof. We begin by observing that for each l P t1, . . . , nu, the set of squarefree
monomials in R can be represented as the disjoint union of four sets, that is,

smpRql “ pGlpIqq Y

˜

ď

diąl

p[
di´lpGdipIqqq

¸

Y

˜

ď

diăl

p\
l´dipGdipIqqq

¸

Y
`

σ´1
pFlq

˘

,

where Fl “ pδN pIqzδFpIqqXσpsmpRqlq. We also note that since σp\8pGpIqqqXδFpIq “ H
by Lemma 4.19, then fl´1pδFpIqq “ |GlpIq| `

ˇ

ˇ

Ť

diąl
p[di´lpGdipIqqq

ˇ

ˇ, as none of the faces

of δFpIq will be contained in
Ť

diăl
p\l´dipGdipIqqq.

But Lemma 4.19 also implies that since σp\8pGpIqqq X δN pIq “ H, then none of
the faces in the non-face complex of I will be contained in

Ť

diăl
p\l´dipGdipIqqq, and

further, they cannot correspond to a facet of δFpIq, therefore fl´1pδN pIqq “ |σ
´1pFlq| `

ˇ

ˇ

Ť

diąl
p[di´lpGdipIqqq

ˇ

ˇ.

However, we know that I is an f -ideal if and only if fl´1pδFpIqq “ fl´1pδN pIqq for each
l P t1, . . . , nu. Therefore I must be an f -ideal if and only if

|GlpIq| `

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

p[
di´lpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

“ |σ´1
pFlq| `

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

p[
di´lpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

This implies that |GlpIq| “ |σ
´1pFlq|.

Now, examining the cardinality of smpRql, it is clear that

|smpRql| “

ˇ

ˇ

ˇ

ˇ

ˇ

pGlpIqq Y

˜

ď

diąl

p[
di´lpGdipIqqq

¸

Y

˜

ď

diăl

p\
l´dipGdipIqqq

¸

Y
`

σ´1
pFlq

˘

ˇ

ˇ

ˇ

ˇ

ˇ

.

But since the above unions are disjoint, we can turn them into summations, and using
the fact that |GlpIq| “ |σ

´1pFlq|, we obtain

|smpRql| “ |pGlpIqq| `

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ď

diąl

p[
di´lpGdipIqqq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ď

diăl

p\
l´dipGdipIqqq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

`

σ´1
pFlq

˘ˇ

ˇ

“ 2 |pGlpIqq| `

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ď

diąl

p[
di´lpGdipIqqq

¸ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ď

diăl

p\
l´dipGdipIqqq

¸ˇ

ˇ

ˇ

ˇ

ˇ

.

Finally, there are precisely
`

n
l

˘

ways to construct a squarefree monomial of degree l in

a polynomial ring of n variables, and thus |smpRql| “
`

n
l

˘

. Applying this to the above
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formula and rearranging, we find
ˆ

n

l

˙

“ 2 |pGlpIqq| `

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ď

diąl

p[
di´lpGdipIqqq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ď

diăl

p\
l´dipGdipIqqq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

,

or equivalently,

|pGlpIqq| “
1

2

˜

ˆ

n

l

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

p[
di´lpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diăl

p\
l´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

,

the result we are looking for. �

We will use this result to prove our main theorem in the next chapter.



CHAPTER 5

Finding New f-Ideals

In this chapter, we discuss our new results about f -ideals. We begin by providing an
example of an f -ideal generated in mixed degree, and state various results that we found
regarding properties of f -ideals. In particular, we show that f -ideals in the polynomial
ring R “ krx1, . . . , xns cannot contain a generator of degree 1 or n, and we further classify
f -ideals in R “ krx1, . . . , xns for n ď 4. We follow these results by describing some
algorithms for constructing f -ideals, given by Guo and Wu [10]. We then introduce
the complement of an ideal, and investigate the implications this has on f -ideals. In
particular, we show that if I is an f -ideal, its complement must also be an f -ideal, and
vice versa.

1. Non-Pure f-Ideals

Up until now, we have been looking at ideals generated by squarefree monomials all
having the same degree. In this section, we find f -ideals that are generated by squarefree
monomials of different degrees, that is, non-pure f -ideals, and examine some of their
properties. We begin with an example:

Example 5.1. Let I “ xx1x4, x2x5, x1x2x3, x3x4x5y Ď R “ krx1, x2, x3, x4, x5s be a
squarefree monomial ideal. Then the following facet and non-face complexes are associated
with I.

x2

x1

x3

x5

x4

δF pIq

x2

x1

x3

x5

x4

δN pIq

Figure 1. Facet and non-face complex of the squarefree monomial ideal
I “ xx1x4, x2x5, x1x2x3, x3x4x5y.

It is easy to see that fpδFpIqq “ fpδN pIqq “ p5, 8, 2q, and therefore I is an f -ideal.

We can also show that the ideal from the previous example is an f -ideal using Theorem
4.20. We do this next.

29
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Example 5.2. Consider the ideal

I “ xx1x4, x2x5, x1x2x3, x3x4x5y Ď R “ krx1, x2, x3, x4, x5s

from the previous example. We can verify that I is in fact an f -ideal using Theorem 4.20.
We first observe that GpIq “ G2pIq Y G3pIq “ tx1x4, x2x5u Y tx1x2x3, x3x4x5u. We also
note that |G2pIq| “ 2 and |G3pIq| “ 2. Working with each l in {1,. . . , 5}, we compute
the cardinality of G1pIq through G5pIq to show that I is an f -ideal.

Letting l “ 1, we have

|G1pIq| “
1

2

˜

ˆ

5

1

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

dią1

p[
di´1

pGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diă1

p\
1´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

Since there is no di ă 1 we have
Ť

diă1p\
1´dipGdipIqqq “ H, thus

ˇ

ˇ

Ť

diă1p\
1´dipGdipIqqq

ˇ

ˇ “

0. Furthermore,
ˇ

ˇ

ˇ

ˇ

ˇ

ď

dią1

p[
di´1

pGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ[
2´1
pG2pIqq Y [

3´1
pG3pIqq

ˇ

ˇ “ |tx1, x2, x3, x4, x5u| “ 5.

Therefore,

|G1pIq| “
1

2

˜

ˆ

5

1

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

dią1

p[
di´1

pGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diă1

p\
1´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

“
1

2
p5´ 5´ 0q “ 0.

For l “ 2, we have |G2pIq| “
1
2

``

5
2

˘

´
ˇ

ˇ

Ť

dią2p[
di´2pGdipIqqq

ˇ

ˇ´
ˇ

ˇ

Ť

diă2p\
2´dipGdipIqqq

ˇ

ˇ

˘

.

Once again, there is no di ă 2 and hence
ˇ

ˇ

Ť

diă2p\
2´dipGdipIqqq

ˇ

ˇ “ 0. Moreover,
ˇ

ˇ

ˇ

ˇ

ˇ

ď

dią2

p[
di´2

pGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ[
3´2
pG3pIqq

ˇ

ˇ “ |tx1x2, x1x3, x2x3, x3x4, x3x5, x4x5u| “ 6,

thus |G2pIq| “
1
2

``

5
2

˘

´ 6´ 0
˘

“ 1
2
p10´6q “ 2, which does indeed agree with our previous

observation.

When l “ 3, we find that
ˇ

ˇ

Ť

dią3p[
di´3pGdipIqqq

ˇ

ˇ “ 0 since there is no di ą 3. Fur-
thermore,

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diă3

p\
3´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

“ | \ pG2pIqq|

“ |tx1x2x4, x1x3x4, x1x4x5, x1x2x5, x2x3x5, x2x4x5u| “ 6,

hence,

|G3pIq| “
1

2

˜

ˆ

5

3

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

dią3

p[
di´3

pGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diă3

p\
3´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

“
1

2

ˆˆ

5

3

˙

´ 0´ 6

˙

“
1

2
p10´ 6q “ 2.
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For l “ 4, we have
ˇ

ˇ

Ť

dią4p[
di´4pGdipIqqq

ˇ

ˇ “ 0, and
ˇ

ˇ

ˇ

ˇ

ˇ

ď

diă4

p\
4´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ\pG3pIqq Y \
2
pG2pIqq

ˇ

ˇ

“ |tx1x2x3x4, x1x2x3x5, x1x3x4x5, x2x3x4x5, x1x2x4x5u| “ 5.

Therefore, |G4pIq| “
1
2

``

5
4

˘

´ 0´ 5
˘

“ 1
2
p5´ 5q “ 0.

Lastly, when l “ 5, we find that
ˇ

ˇ

Ť

dią5p[
di´5pGdipIqqq

ˇ

ˇ “ 0, and
ˇ

ˇ

ˇ

ˇ

ˇ

ď

diă5

p\
5´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ\
2
pG3pIqq Y \

3
pG2pIqq

ˇ

ˇ “ |tx1x2x3x4x5u| “ 1.

Thus, we find |G5pIq| “
1
2

``

5
5

˘

´ 0´ 1
˘

“ 1
2
p1 ´ 1q “ 0. We have therefore shown that

|G1pIq| “ 0, |G2pIq| “ 2, |G3pIq| “ 2, |G4pIq| “ 0, and |G5pIq| “ 0 through the above
computations, and since these numbers agree with the respective number of generators of
each degree for I, we have once again shown that I is an f -ideal.

Lemma 5.3. Let I “ xg1, g2, . . . , gpy Ď R “ krx1, x2, . . . , xns be a squarefree monomial
ideal. If I contains at least one monomial of degree 1, then I cannot be an f -ideal. In
other words, if I is an f -ideal, degpgiq ą 1 for all i.

Proof. Let I be an f -ideal and suppose that I contains a monomial of degree 1, say
gk. Then each face of the non-face complex will not be divisible by gk by definition. But
since gk � gk, then δN pIq cannot contain gk or any faces containing gk. But this implies
that δN pIq will contain one less vertex than δFpIq, and hence the f -vectors will not be
the same for both the facet and the non-face complex. This is a contradiction as I is an
f -ideal. Hence there are no monomials of degree 1 in I. �

Lemma 5.4. Let I “ xg1, g2, . . . , gpy Ď R “ krx1, x2, . . . , xns be a squarefree monomial
ideal. If gi “ x1x2 ¨ ¨ ¨ xn P I for some 1 ď i ď p, i.e., I “ xx1 ¨ ¨ ¨ xny, then I cannot be an
f -ideal. In other words, I cannot be generated by a squarefree monomial of degree n.

Proof. Since by definition tg1, . . . , gpu is a minimal generating set for I, then if
there exists a monomial generator gi “ x1x2 ¨ ¨ ¨ xn for some i P t1, . . . , pu, then we must
have that I “ xx1x2 ¨ ¨ ¨ xny. But then fn´1 “ 1 in fpδFpIqq. Since x1x2 ¨ ¨ ¨ xn P I and
I Ď R “ krx1, x2, . . . , xns, then δN pIq will only contain faces of dimension strictly less
than n´ 1. But this implies that fn´1 “ 0 in fpδN pIqq, and hence δFpIq and δN pIq have
different f -vectors. From this we conclude that I is not an f -ideal. �

Theorem 5.5. Let R “ krx1, x2, x3, x4s. Then R contains precisely 12 f -ideals, all
of which are generated in degree 2. As a consequence, the polynomial ring R contains no
f -ideals generated in mixed degree.

Proof. By a brute force count, out of the 32,767 squarefree monomial ideals found
in R “ krx1, x2, x3, x4s, we find that only 12 of them are actually f -ideals (See Appendix
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A for a list of all twelve of these f -ideals). Because we found that there were 12 f -ideals
generated in degree 2 in Chapter 6, then we can conclude that there are no f -ideals
generated by mixed degree in the polynomial ring R “ krx1, x2, x3, x4s. �

Lemma 5.6. Let I Ď R “ krx1, . . . , xns for n ď 3 be a squarefree monomial ideal.
Then I cannot be an f -ideal.

Proof. We must consider f -ideals in polynomial ringsR “ krx1, . . . , xis for i “ 1, 2, 3.
For ideals I Ď R “ krx1s then we can only have squarefree monomials of degree 1 or 0. If
I “ xx1y, then by Lemma 5.3, I cannot be an f -ideal as it contains a squarefree monomial
of degree 1.

For the case of R “ krx1, x2s, then the only possible squarefree monomials (up to
permutation of vertices) are I “ xx1y, I “ xx1, x2y, and I “ xx1x2y. But by Lemma 5.3,
the first and second case cannot be f -ideals, and by Lemma 5.4, the third case cannot be
an f -ideal.

For squarefree monomial ideals in R “ krx1, x2, x3s, then Lemma 5.3 implies that
we can eliminate all squarefree monomials containing at least one monomial of degree 1,
and Lemma 5.4 allows us to eliminate the case when I “ xx1x2x3y. We are therefore
left with two cases up to permutation of vertices, namely, when I “ xx1x2, x1x3y and
I “ xx1x2, x1x3, x2x3y. If I “ xx1x2, x1x3y, then fpδFpIqq “ p3, 2q while fpδN pIqq “ p3, 1q,
and thus I is not an f -ideal. Lastly, if I “ xx1x2, x1x3, x2x3y, then fpδFpIqq “ p3, 3q while
fpδN pIqq “ p3, 0q. Hence, I cannot be an f -ideal. �

Theorem 5.7. Let I Ď R “ krx1, x2, x3, x4s be a squarefree monomial ideal. If I is
an f -ideal, then I must have all of its generators in the same degree. As a consequence,
there are no f -ideals generated in mixed degree in the polynomial ring R “ krx1, . . . , xns
for n ď 4.

Proof. Let R “ krx1, x2, x3, x4s. By a count of all f -ideals in R “ krx1, x2, x3, x4s

using Macaulay2 [7], we know there are only 12 such ideals. Since we know that there are
12 f -ideals generated in degree 2 in R “ krx1, x2, x3, x4s by Table 2 in Chapter 6, then we
can conclude that there are no f -ideals in R “ krx1, x2, x3, x4s generated in mixed degree.
By Lemma 5.6, it follows directly that there are no f -ideals generated in mixed degree in
the polynomial ring R “ krx1, . . . , xns for n ď 4. �

2. Creating New f-Ideals

In this section, we discuss the ability to construct an f -ideal. To begin, we outline
two methods given by Guo and Wu [10] for constructing f -ideals generated in degree 2.

Algorithm 5.8 (J. Guo, T. Wu, [10]). Let R “ krx1, . . . , xns be a polynomial ring
and let rns “ t1, . . . , nu. Furthermore, let S be a subset of rns, and S̄ “ rnszS, the
complement of S in rns, with ||S| ´ |S̄|| ď 1.
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Step 1: Construct the set X as follows:

X – txixj | i, j P S or i, j P S̄u.

Step 2: Set |S| “ m1 and |S̄| “ m2 and compute

m –
1

2

ˆ

n

2

˙

´

ˆ

m1pm1 ´ 1q `m2pm2 ´ 1q

2

˙

.

Step 3: Construct a set X̃ such that:

X̃ Ď txixj | i P S and j P S̄u with |X̃| “ m.

Step 4: Construct the ideal I as follows:

I “ xX Y X̃y.

The ideal generated in Step 4 is an f -ideal.

In the above proposition, note that the choice of xixj’s in X̃ was arbitrary, as long as
we choose exactly m such squarefree monomials with i P S and j P S̄. Another way to go
through this process is given below:

Algorithm 5.9. To construct an f -ideal I Ď R “ krx1, . . . , xns generated in degree
2 in n-variables, consider the following steps.

Step 1: Construct the sets X and X̄ such that

X Ď tx1, . . . , xnu and X̄ “ tx1, . . . , xnuzX with ||X| ´ |X̄|| ď 1.

Step 2: Set |X| “ m1 and |X̄| “ m2, and compute m as follows:

m “
1

2

ˆ

n

2

˙

´

ˆ

m1pm1 ´ 1q `m2pm2 ´ 1q

2

˙

,

Step 3: Construct complete graphs Km1 and Km2 and connect Km1 and Km2 using m
edges. Label the resulting graph (simplicial complex) as G.

Step 4: Compute the facet ideal of G. The resulting ideal will be an f -ideal.

The above algorithms provide a straight-forward method of constructing f -ideals gen-
erated in degree 2, inside large polynomial rings. To illustrate this, we look at an example
in R “ krx1, . . . , x8s.

Example 5.10. Suppose we wish to find a quadratic f -ideal in R “ krx1, . . . , x8s. We
first construct two sets, namely X and X̄. We choose

X “ tx1, x2, x7, x8u and X̄ “ tx3, x4, x5, x6u.

From here, we construct two K4 complete graphs, labelling the vertices with x1, . . . , x8.
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x8

x1 x2

x7 x6

x3 x4

x5

Figure 2. Complete graphs K4.

Since m1 “ m2 “ 4, then m “ 1
2

`

8
2

˘

´

´

4p4´1q`4p4´1q
2

¯

“ 2. We therefore need to

connect the two K4 graphs using m “ 2 edges. We choose to add edges tx2, x3u and
tx6, x7u, and hence we obtain

x8

x1 x2

x7 x6

x3 x4

x5

Figure 3. G “ K4 YK4 Y tx2, x3u Y tx6, x7u.

Computing the facet (edge) ideal IF of the graph G, we obtain

IF “ xx1x2,x1x7, x1x8, x2x3, x2x7, x2x8, x3x4,

x3x5, x3x6, x4x5, x4x6, x5x6, x6x7, x7x8y.

The associated facet and non-face complexes of IF are given below.

x8

x1

x2 x3

x4

x5

x6x7

δF pIF q “ G

x8

x1

x2 x3

x4

x5

x6x7

δN pIF q

Figure 4. Facet and non-face complex of the squarefree monomial ideal I.

We observe that fpδFpIFqq “ fpδN pIFqq “ p8, 14q, and hence IF is an f -ideal.

3. Ideals and Their Complements

In this section we examine the complement of an ideal, and some of the implications
this has on f -ideals. We begin by defining the generalized Newton complementary dual
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of an ideal, originally given by Ansaldi et al. [2], based upon ideas of Costa and Simis
[4]. We follow this with some examples.

Definition 5.11. Let I Ď R “ krx1, . . . , xns with GpIq “ tg1, . . . , gpu a minimal
generating set of I and gi “ xαi

i “ x
αi,1

i,1 ¨ ¨ ¨ x
αi,j

i,j for all i “ 1, . . . , p. Furthermore, set
β “ pβ1, . . . , βnq P Nn with βk ě αi,k for all k “ 1, . . . , n and all i “ 1, . . . , p. Then the

ideal Î rβs with generating set
"

ĝi “
xβ

gi
| gi P G

*

“

"

xβ

g1

,
xβ

g2

, . . . ,
xβ

gp

*

is called the generalized Newton complementary dual of I determined by β.

Remark 5.12. Let I “ xg1, g2, . . . , gpy Ď R “ krx1, . . . , xns be a squarefree monomial

ideal and let Î r1s be the generalized Newton complementary dual of I determined by
β “ p1, 1, . . . , 1q. Then we obtain a complementary squarefree monomial ideal generated

by squarefree monomials ĝ1, ĝ2, . . . , ĝp. For simplicity, we will denote Î r1s by Î and call it
the complement of I.

Example 5.13. Consider the ideals I1 “ xxz4, x3y7z2, y3zy and I2 “ xxy, xz, yzy in
krx, y, zs. Then if we set β1 “ p4, 7, 5q and β2 “ p1, 1, 1q we obtain

Î1

rβ1s
“

B

x4y7z5

xz4
,
x4y7z5

x3y7z2
,
x4y7z5

y3z

F

“ xx3y7z, xz3, x4y4z4
y,

and

Î2

rβ2s
“ Î2 “

B

xyz

xy
,
xyz

xz
,
xyz

yz

F

“ xz, y, xy.

As a major motivation for the section that follows, we are interested in the relationship
between I and its complement, Î. In particular, we examine various cases in which we
compute the complement of an f -ideal I, and test whether Î is also an f -ideal. These
examples are presented below:

Example 5.14. Consider the f -ideal from Example 3.11:

I “ xx1x2, x2x5, x3x4, x3x5, x4x5y Ď R “ krx1, x2, x3, x4, x5s.

We can construct another ideal from I by forming the complement, Î.

I “ x x1x2, x2x5, x3x4, x3x5, x4x5 y

Ó Ó Ó Ó Ó

Î “ x x3x4x5, x1x3x4, x1x2x5, x1x2x4, x1x2x3y.

Finding the facet and the non-face complex of Î yields

δFpÎq “ xtx1, x2, x3u, tx1, x2, x4u, tx1, x2, x5u, tx1, x3, x4u, tx3, x4, x5uy,

and,

δN pÎq “ xtx2, x4, x5u, tx1, x4, x5u, tx2, x3, x5u, tx1, x3, x5u, tx2, x3, x4u, tx1, x2uy.
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These simplicial complexes are illustrated below:

x2

x1

x3

x5

x4

δF pÎq

x2

x1

x3

x5

x4

δN pÎq

Figure 5. Facet and non-face complex of the squarefree monomial ideal
Î “ xx1x2x3, x1x2x4, x1x2x5, x1x3x4, x3x4x5y.

Computing the f -vectors of the facet and non-face complex, we see that fpδFpÎqq “

fpδN pÎqq “ p5, 10, 5q, and hence Î is indeed an f -ideal.

Being able to construct another f -ideal using a given f -ideal was an unexpected result,
and is something we examine further throughout the remainder of this project. As a result,
one may also ask whether this works for f -ideals generated in mixed degree. For an ideal
in krx1, . . . , x5s, we provide an example that illustrates that it does.

Example 5.15. Consider the f -ideal generated in mixed degree from Example 5.1.
We compute its complement:

I “ x x1x4, x2x5, x1x2x3, x3x4x5 y

Ó Ó Ó Ó

Î “ x x2x3x5, x1x3x4, x4x5, x1x2 y.

Constructing the facet and the non-face complex of Î, we obtain:

x2

x1

x3

x5

x4

δF pÎq

x2

x1

x3

x5

x4

δN pÎq

Figure 6. Facet and non-face complex of the squarefree monomial ideal
Î “ xx1x2, x4x5, x1x3x4, x2x3x5y.

The f -vectors of both δFpÎq and δN pÎq are p5, 8, 2q, and therefore Î is an f -ideal.
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We now consider one last example for a quadratic f -ideal in R “ krx1, . . . , x8s.

Example 5.16. Consider the following quadratic f -ideal from Example 5.10:

I “ xx1x2,x1x7, x1x8, x2x3, x2x7, x2x8, x3x4,

x3x5, x3x6, x4x5, x4x6, x5x6, x6x7, x7x8y.

Constructing the complement ideal,

Î “ xx3x4x5x6x7x8, x1x4x5x6x7x8, x1x2x5x6x7x8, x1x2x4x6x7x8, x1x2x3x6x7x8,

x1x2x4x5x7x8, x1x2x3x5x7x8, x1x2x3x4x7x8, x2x3x4x5x6x8, x1x3x4x5x6x8,

x1x2x3x4x5x8, x2x3x4x5x6x7, x1x3x4x5x6x7, x1x2x3x4x5x6y,

we find that fpδFpÎqq “ fpδN pÎqq “ p8, 28, 56, 70, 56, 14q, and hence Î is an f -ideal.

4. Complementary f-Ideals

In this section, we introduce the main result of this paper. In order to prove this
result, we begin with several lemmas, one of which is crucial in the proof of the main
theorem.

Lemma 5.17. Let R “ krx1, . . . , xns be a polynomial ring and let S be a subset of

smpRqd. Furthermore, set Ŝ “ tm{s | s P Su with m “ x1x2 . . . xn. Then the following
conditions hold:

(i) S is a lower perfect subset of smpRqd if and only if Ŝ is an upper perfect subset
of smpRqn´d

(ii) S is an upper perfect subset of smpRqd if and only if Ŝ is a lower perfect subset
of smpRqn´d

Proof. See Lemma 3.1 of [10] for details of this proof. �

Lemma 5.18. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal with minimal

generating set GpIq “
Ťk
i“1GdipIq. Then for each l P t1, 2, . . . , nu,

(i)
ˇ

ˇ

Ť

diăl

`

[l´diGn´dipIq
˘
ˇ

ˇ “

ˇ

ˇ

ˇ

Ť

diăl

´

\l´diGdipÎq
¯
ˇ

ˇ

ˇ
, and

(ii)
ˇ

ˇ

Ť

diąl

`

\di´lGn´dipIq
˘
ˇ

ˇ “

ˇ

ˇ

ˇ

Ť

diąl

´

[di´lGdipÎq
¯
ˇ

ˇ

ˇ
.

Proof. piq To begin, we define a map ϕ as follows:

ϕ :
ď

diăl

`

\
l´diGdipIq

˘

ÝÑ
ď

lădi

´

[
l´diGn´dipÎq

¯

m ÞÝÑ
x1 ¨ ¨ ¨ xn

m
.

We first ensure this map is well-defined. Let m be a squarefree monomial with m P
Ť

diăl

`

\l´diGdipIq
˘

. Then there exists a dj ă l such that m P \l´djpGdjpIqq. Then by
definition, there exists an m1 P GdjpIq and a squarefree monomial g, with degpgq “ l´ dj
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and gcdpg,m1q “ 1 such that m “ m1g. Because we have m1 P GdjpIq, then x1¨¨¨xn
m1

P

Gn´djpÎq, and hence g | x1¨¨¨xn
m1

implies x1¨¨¨xn
m1g

P [l´djpGn´djpÎqq since degpgq “ l ´ dj. We

therefore have that

ϕpmq “
x1 ¨ ¨ ¨ xn

m
“
x1 ¨ ¨ ¨ xn
m1g

P
ď

diăl

p[
l´djpGn´djpÎqqq

and hence, ϕ is well-defined.

For injectivity, it is clear that

ϕpαq “ ϕpβq ñ
x1 ¨ ¨ ¨ xn

α
“
x1 ¨ ¨ ¨ xn

β
ñ α “ β,

and hence ϕ is injective.

Lastly, we check that ϕ is surjective. To begin, let u P
Ť

diăl
p[l´dipGn´dipÎqqq. Then

there exists a dk ă l such that u P [l´dkpGn´dkpÎqq. But then there must be a squarefree

monomial g, with degpgq “ l ´ dk, such that ug P Gn´dkpÎq and gcdpg, uq “ 1. This
implies that x1¨¨¨xn

ug
P GdkpIq. Multiplying by g, we find

g ¨
x1 ¨ ¨ ¨ xn
ug

“
x1 ¨ ¨ ¨ xn

u
P \

l´dkGdkpIq Ď
ď

diăl

p\
l´diGdipIqq.

But from this we see that

ϕ
´x1 ¨ ¨ ¨ xn

u

¯

“
x1 ¨ ¨ ¨ xn
x1¨¨¨xn
u

“ u.

We therefore have that ϕ is a well-defined bijective map. Since we have a bijection between

the two finite sets
Ť

diăl

`

\l´diGdipIq
˘

and
Ť

diăl

´

[l´diGn´dipÎq
¯

, then

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diăl

`

\
l´diGdipIq

˘

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diăl

´

[
l´diGn´dipÎq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

Lastly, since
ˆ̂
I “ I, then

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diăl

´

\
l´diGdipÎq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diăl

`

[
l´diGn´dipIq

˘

ˇ

ˇ

ˇ

ˇ

ˇ

.

piiq We now define a map ψ as follows:

ψ :
ď

diąl

`

[
di´lGdipIq

˘

ÝÑ
ď

diąl

´

\
di´lGn´dipÎq

¯

m ÞÝÑ
x1 ¨ ¨ ¨ xn

m
.

Once again, we ensure this map is well-defined. Let m be a squarefree monomial with
m P

Ť

diąl

`

[di´lGdipIq
˘

. Then there exists a dj ą l such that m P [dj´lpGdjpIqq. But by
definition, there exists an m1 P GdjpIq and a squarefree monomial g, with degpgq “ dj ´ l
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and g|m1 such that m “ m1{g. But m1 P GdjpIq implies that x1¨¨¨xn
m1

P Gn´djpÎq, and since

degpgq “ dj ´ l, then g ¨ x1¨¨¨xn
m1

P \dj´lGn´djpÎq. We therefore have that

ψpmq “
x1 ¨ ¨ ¨ xn

m
“
x1 ¨ ¨ ¨ xn
m1{g

“ g ¨
x1 ¨ ¨ ¨ xn
m1

P
ď

diąl

p[
di´lpGn´dipÎqqq

and hence ψ is well-defined.

For injectivity, we again see that

ψpαq “ ψpβq ñ
x1 ¨ ¨ ¨ xn

α
“
x1 ¨ ¨ ¨ xn

β
ñ α “ β,

and hence ψ is injective.

Lastly, we check that ψ is surjective. To begin, let u P
Ť

diąl

´

\di´lGn´dipÎq
¯

. Then

there exists a dk ą l such that u P \dk´lpGn´dkpÎqq. But then there must be v P Gn´dkpÎq
and a squarefree monomial g, with degpgq “ dk ´ l, such that u “ vg with gcdpg, vq “ 1.

Since v P Gn´dkpÎq, then x1¨¨¨xn
v

P GdkpIq. But since gcdpg, vq “ 1, then dividing by g, we
obtain

x1 ¨ ¨ ¨ xn
vg

“
x1 ¨ ¨ ¨ xn

u
P [

dk´lpGdkpIqq Ď
ď

diąl

`

[
di´lGdipIq

˘

.

From this, we see that

ψ
´x1 ¨ ¨ ¨ xn

u

¯

“
x1 ¨ ¨ ¨ xn
x1¨¨¨xn
u

“ u.

We therefore have that ψ is a well-defined bijective map. Since we have a bijection between

the two finite sets
Ť

diąl

`

[di´lGdipIq
˘

and
Ť

diąl

´

\di´lGn´dipÎq
¯

, we can conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

`

[
di´lGdipIq

˘

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

´

\
di´lGn´dipÎq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

Once again, since
ˆ̂
I “ I, then we have that

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

´

[
di´lGdipÎq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąl

`

\
di´lGn´dipIq

˘

ˇ

ˇ

ˇ

ˇ

ˇ

,

thus completing the proof. �

Theorem 5.19. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal. Then I is

an f -ideal if and only if Î is an f -ideal.

Proof. (ñ) Let I Ď R “ krx1, . . . , xns be an f -ideal and let GdipIq be the subset of

minimal generators of I of degree di. We first observe that |GlpÎq| “ |Gn´lpIq| for each
l P t1, . . . , nu, and since I is an f -ideal, then by Theorem 4.20, we know that for each
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l P t1, . . . , nu, we have that
ˇ

ˇ

ˇ
GlpÎq

ˇ

ˇ

ˇ
“ |Gn´lpIq|

“
1

2

˜

ˆ

n

n´ l

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diąn´l

p[
di´pn´lqpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

diăn´l

p\
pn´lq´dipGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

Using the fact that
`

n
n´l

˘

“ n!
pn´lq!pn´pn´lqq!

“ n!
l!pn´lq!

“
`

n
l

˘

and rearranging indices, the

above expression is equal to

1

2

˜

ˆ

n

l

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ląn´di

p[
l´pn´diqpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

lăn´di

p\
pn´diq´lpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

But since di “ n´ pn´ diq, then Lemma 5.18 implies that
ˇ

ˇ

ˇ

ˇ

ˇ

ď

ląn´di

p[
l´pn´diqpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ląn´di

p\
l´pn´diqpGn´dipÎqqq

ˇ

ˇ

ˇ

ˇ

ˇ

,

and
ˇ

ˇ

ˇ

ˇ

ˇ

ď

lăn´di

p\
pn´diq´lpGdipIqqq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ď

lăn´di

p[
pn´diq´lpGn´dipÎqqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Therefore, the above formula yields

ˇ

ˇ

ˇ
GlpÎq

ˇ

ˇ

ˇ
“

1

2

˜

ˆ

n

l

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ląn´di

p\
l´pn´diqpGn´dipÎqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

lăn´di

p[
pn´diq´lpGn´dipÎqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

Since we know this formula holds for all degrees and all l, we set ei “ n´di and substitute
into the formula above to obtain

ˇ

ˇ

ˇ
GlpÎq

ˇ

ˇ

ˇ
“

1

2

˜

ˆ

n

l

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

eiąl

p[
ei´lpGeipÎqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

eiăl

p\
l´eipGeipÎqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

We have therefore shown that for each l P t1, . . . , nu,

ˇ

ˇ

ˇ
GlpÎq

ˇ

ˇ

ˇ
“

1

2

˜

ˆ

n

l

˙

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

eiąl

p[
ei´lpGeipÎqqq

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ď

eiăl

p\
l´eipGeipÎqqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

,

and thus, by Theorem 4.20, Î must be an f -ideal.

(ð) If Î is an f -ideal, then it follows from above that
ˆ̂
I is an f -ideal. But

ˆ̂
I “ I,

therefore I is an f -ideal, thus completing the proof. �



CHAPTER 6

Results on f-Ideals

In this chapter, we discuss some of the implications of Theorem 5.19. We also perform
a raw count of all f -ideals generated in degree d for various n and d.

1. Implication of Complementary f-Ideals

This section will summarize some of the implications associated to Theorem 5.19. We
present various corollaries.

Corollary 6.1. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal generated

in degree d with minimal generating set GpIq “ tg1, . . . , gpu, and let Î be the complement

of I. Then Î is an f -ideal if and only if GpIq is pn, dqth perfect and |GpIq| “ 1
2

`

n
d

˘

.

Proof. Let I Ď R “ krx1, . . . , xns be a squarefree monomial ideal generated in degree

d with minimal generating set GpIq “ tg1, . . . , gpu. Then by Theorem 5.19, Î is an f -ideal
if and only if I is an f -ideal, but by Theorem 4.6, I is an f -ideal if and only if GpIq is
pn, dqth perfect and |GpIq| “ 1

2

`

n
d

˘

. �

Corollary 6.2. Let V pn, dq be the set of all f -ideals generated in degree d in R “
krx1, . . . , xns and let |V pn, dq| denote the cardinality of V pn, dq. Then

|V pn, dq| “ |V pn, n´ dq|.

Proof. For each f -ideal generated in degree d in R “ krx1, . . . , xns, Theorem 5.19
implies that there is a complementary f -ideal generated in degree n ´ d also living in
R “ krx1, . . . , xns. Because of this one-to-one correspondence, it follows that |V pn, dq| “
|V pn, n´ dq|. �

Corollary 6.3. Let I Ď R “ krx1, . . . , xns be an f -ideal. Then I cannot be generated
by a squarefree monomial of degree n´ 1.

Proof. Let I Ď R “ krx1, . . . , xns be an f -ideal and assume that I contains at least
one generator of degree n ´ 1. Then by Theorem 5.19, there must be a complementary
f -ideal which contains a generator of degree 1. But by Lemma 5.3, this cannot happen.
From this we conclude that I cannot contain a generator of degree n´ 1. �

Guo, Wu, and Liu [9],[10] also provide several algorithms to construct f -ideals of
various types. In particular, working in R “ krx1, . . . , xns, they break their algorithms
into three cases, namely, when d “ 2, when d ą 2 and n “ d ` 2, and lastly when

41
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n ą d` 2. These algorithms are seen in [9] on page 4, and in [10] as Algorithm 4.1, and
4.3, respectively.

As a result of Theorem 5.19, the algorithms mentioned above can therefore be used
to construct complementary f -ideals of degree n´ d, for any given case. In other words,
for each f -ideal that can be constructed using one of the algorithms above, Theorem 5.19
can produce another f -ideal.

2. Counting f-Ideals

In this section, we perform a raw count of all f -ideals generated in degree d for a
given n inside R “ krx1, . . . , xns, where the minimal generating set contains p squarefree
monomials. For example, if we let I “ xx1x2, x2x4, x2x5, x3x4y Ď R “ krx1, x2, x3, x4, x5s,
then n “ 5, d “ 2, and p “ 4.

By Theorem 3.14, we know that for each combination of n and d, there is only one
value of p that will yield an f -ideal generated in degree d. Below, we calculate which
values we need to check, simply to alleviate computing combinations that surely will not
work. In order to calculate p, recall that p “ 1

2

`

n
d

˘

.

n
d

2 3 4 5 6 7 8

2 0.5* - - - - - -

3 1.5* 0.5* - - - - -

4 3 2 0.5* - - - -

5 5 5 2.5* 0.5* - - -

6 7.5* 10 7.5* 3 0.5* - -

7 10.5* 17.5* 17.5* 10.5* 3.5* 0.5* -

8 14 28 35 28 14 4 0.5*

Table 1. Calculation of p for specific combinations of n and d. An asterisk
(i.e. 17.5*) indicates that p is not divisible by 2 and thus cannot yield an
f -ideal.

With the p values computed for each combination of n and d, we now use Macaulay2
to compute the number of f -ideals generated in degree d, with 2 ď d ď 8, for each
n P t2, . . . , 8u. These results are displayed in Table 2. Moreover, Theorem 3.14 implies
that any combination of n and d that produce a p value not divisible by 2 cannot yield
an f -ideal. Thus, in Table 2, we have automatically filled in those cells with a zero.
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n
d

2 3 4 5 6 7 8

2 0 - - - - - -

3 0 0 - - - - -

4 12 0 0 - - - -

5 72 72 0 0 - - -

6 0 48,494 0 0 0 - -

7 0 0 0 0 0 0 -

8 29, 680: ? ? ? 29, 680; 0 0

Table 2. Number of f -ideals in the polynomial ring of n variables, gen-
erated by p squarefree monomials of degree d. : represents a number
computed using Theorem 4.12, and ; represents a number computed us-
ing Corollary 6.2

Working in the polynomial ring krx1, . . . , x8s, we were unable to compute the number
of f -ideals generated in degree 3, 4, and 5, due to restraints on the computation power of
the computers we used.

In addition to the computations for f -ideals generated in degree d inside polynomials
rings R “ krx1, . . . , xns for n P t2, . . . , 8u, we used Macaulay2 to compute all f -ideals gen-
erated in mixed and unmixed degree in R “ krx1, x2, x3, x4s. Lastly, we used Macaulay2
to verify that all 72 f -ideals generated in degree 2 in R “ krx1, x2, x3, x4, x5s were com-
plements of the 72 f -ideals generated in degree 3 in R.



CHAPTER 7

Conclusion

Throughout this project, we examined f -ideals and summarized many known results
about these ideals. We focused mainly on the work done in [1], [3], [9], and [10]. In
particular, we looked at the classification of f -ideals generated in degree 2 given by Abbasi
et al. [1], as well as a generalization of this result given by Anwar et al. [3]. In addition
to our study of these results, we also summarized a different approach to the study of
f -ideals, given by Guo, Wu, and Liu in [9] and [10].

Using the generalized Newton complementary dual of an ideal, first introduced by
Costa and Simis [4] and expanded upon by Ansaldi et al. [2], together with the results
mentioned above, we were ultimately able to discover our main result, namely, Theorem
5.19.

For future work, we would be interested in examining the relationship between the
primary decompositions of I and Î. In particular, we found that given an unmixed f -ideal
I, its complement Î will not necessarily be unmixed.

Example 7.1. Consider the f -ideal from Example 3.11:

I “ xx1x2, x2x5, x3x4, x3x5, x4x5y Ď R “ krx1, x2, x3, x4, x5s.

We know from Example 3.11 that I has the following primary decomposition:

I “ xx1, x3, x5y X xx1, x4, x5y X xx2, x3, x4y X xx2, x3, x5y X xx2, x4, x5y.

Furthermore, we know the complement of I, namely, Î, from Example 5.14. We can
compute the primary decomposition of Î to obtain

Î “ xx3x4x5, x1x3x4, x1x2x5, x1x2x4, x1x2x3y

“ xx1, x3y X xx1, x4y X xx1, x5y X xx2, x3y X xx2, x4y X xx3, x4, x5y.

From above, it is clear that I is unmixed, but Î is not, and hence I unmixed does not
imply that Î is unmixed.

The above problem would serve as a good point of departure for future investigation.
In general, we end with several questions:

Question 7.2. How are the primary decompositions of I and Î related?

Question 7.3. How many f -ideals generated in mixed degree exist in krx1, . . . , xns
for various n?

Question 7.4. Are there instances in which I “ Î?
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Macaulay2 Code

Below is the Macaulay2 code used to compute all f -ideals generated in degree 2 in the
polynomial ring R “ krx1, x2, x3, x4s:

loadPackage "SimplicialComplexes"

loadPackage "EdgeIdeals"

loadPackage "SimplicialDecomposability"

-- This computes all f-ideals of degree 2 in the polynomial ring of

-- 4 variables generated by 3 generators. It outputs a list of all such

-- f-ideals as "lp". There are 12 of these ideals.

-- **************** n = 4 ******** Degree 2 ********************************

R = QQ[x_1,x_2,x_3,x_4]

lprime = {x_1,x_2,x_3,x_4}

l = {};

for i from 0 to #lprime-2 do (

for j from i+1 to #lprime-1 do (

l =append(l,lprime_i*lprime_j)

)

)

print l

t = subsets(l,3) -- subsets of size 3 - this can be altered - p value

lp = {};

for j from 0 to #t-1 do (

print {t_j}; -- list of facets

print "************ Information for Facet Complex *************";

facetcomplex = simplicialComplex(t_j); -- Facet Complex of I

nffacetideal = monomialIdeal(facetcomplex); -- Stanley-Reisner ideal of Facet Complex

fvecfacet = fVector(facetcomplex);

print fvecfacet;

print "********** Information for Non-Face Complex *************";
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facetideal = monomialIdeal(t_j); -- Facet ideal of facet complex

nonfacecomplex = simplicialComplex(facetideal); -- non face complex of I

nfnonfaceideal = monomialIdeal(nonfacecomplex); -- stanley riesner ideal of nonface complex

fvecnonface = fVector(nonfacecomplex);

print fvecnonface;

print "******************************************************************";

print "Same f-vector:";

<< fvecfacet === fvecnonface;

print " ";

if fvecfacet === fvecnonface then print t_j;

if fvecfacet === fvecnonface then lp=append(lp,t_j);

print "******************************************************************"

);

print lp

The set of f -ideals obtained using the code above is given below:

I “ xx1x2, x1x4, x2x3y I “ xx1x3, x1x4, x2x3y I “ xx1x2, x1x3, x2x4y

I “ xx1x3, x1x4, x2x4y I “ xx1x3, x2x3, x2x4y I “ xx1x4, x2x3, x2x4y

I “ xx1x2, x1x3, x3x4y I “ xx1x2, x1x4, x3x4y I “ xx1x2, x2x3, x3x4y

I “ xx1x4, x2x3, x3x4y I “ xx1x2, x2x4, x3x4y I “ xx1x3, x2x4, x3x4y

The code below can be used to determine if a given squarefree monomial ideal I is an
f -ideal, and determine whether its complement, Î, is an f -ideal.

-- This script determines whether a given ideal I is an f-ideal

-- and also whether its complement is an f-ideal.

loadPackage "SimplicialComplexes"

loadPackage "EdgeIdeals"

loadPackage "SimplicialDecomposability"

R = QQ[x_1,x_2,x_3,x_4,x_5]

mx = x_1*x_2*x_3*x_4*x_5

l = {x_1*x_2*x_3,x_3*x_4*x_5,x_1*x_4,x_2*x_5} -- input ideal here

lcomp = {mx//l_0,mx//l_1,mx//l_2,mx//l_3}

t = l;

print {t}; -- list of facets

print "************ Information for Facet Complex *************";
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facetcomplex = simplicialComplex(t)

nffacetideal = monomialIdeal(facetcomplex);

fvecfacet = fVector(facetcomplex);

print fvecfacet;

print "********** Information for Non-Face Complex *************";

facetideal = monomialIdeal(t);

nonfacecomplex = simplicialComplex(facetideal)

nfnonfaceideal = monomialIdeal(nonfacecomplex);

fvecnonface = fVector(nonfacecomplex);

print "******************************************************************";

print "Same f-vector:";

<< fvecfacet === fvecnonface;

print " ";

print "******************************************************************"

s = lcomp;

print {s}; -- list of facets

print "************ Information for Facet Complex *************";

facetcomplex = simplicialComplex(s)

nffacetideal = monomialIdeal(facetcomplex);

fvecfacet = fVector(facetcomplex);

print fvecfacet;

print "********** Information for Non-Face Complex *************";

facetideal = monomialIdeal(s);

nonfacecomplex = simplicialComplex(facetideal)

nfnonfaceideal = monomialIdeal(nonfacecomplex);

fvecnonface = fVector(nonfacecomplex);

print fvecnonface;

print "******************************************************************";

print "Same f-vector:";

<< fvecfacet === fvecnonface;

print " ";

print "******************************************************************"
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