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Abstract

Let G be a finite simple graph on the vertex set VG with the edge set EG. Using the
paths of G of length t, we can generate a square-free monomial ideal It(G). Let It(G)∨

denote the square-free Alexander dual of It(G). In this project, we study properties of
the sets of associated primes Ass(R/(It(G)∨)s), as s increases. We will establish a lower
bound on the index of stability N for Ass(R/(I2(G)∨)s), when G is a star. As well, we
will show how our result can be applied to answer a question raised by Francisco, Hà, and
Van Tuyl.
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CHAPTER 1

Introduction

The focus of this project is on the algebraic side of the correspondence between com-
mutative algebra and graph theory. We are interested in studying the associated primes
of the Alexander dual of path ideals of graph trees.

In this chapter we will introduce some terminology from graph theory and commu-
tative algebra and give examples. Detailed definitions can be found in Chapters 2 and
3. Motivation for our problem can be found in Chapter 4, and new results in Chapter 5.
Here we will summarize the content of the chapters to follow.

We define a finite simple graph G on the vertex set VG with the edge set EG as a graph
containing no loops or multiple edges. We say that G is connected if there exists a path
between every pair of vertices u, v ∈ VG. A graph H is an induced subgraph of a graph G
if VH ⊆ VG and H contains all edges uv ∈ EG with u, v ∈ VH . In the preceding definition,
VH denotes the vertex set of H and VG and EG denote the vertex set and edge set of G
respectively. If G is a graph on the vertex set VG = {v1, . . . , vn} and the edge set of G is
of the form EG = {v1v2, v2v3, . . . , vn−1vn, vnv1}, then we say that G is a cycle. A tree is a
connected graph G that contains no cycles as induced subgraphs.

Example 1.1. Below we have examples of a tree and a cycle of length 4. Both of these
graphs are connected.

A tree.

v1

v2 v3 v4

v5 v6 v7

v1 v2

v3 v4

A cycle of length 4.

We can make a correspondence between graph theory and commutative algebra by
associating graphs with monomial ideals. Specifically, given a finite simple graph G on n
vertices, we can generate monomial ideals in the polynomial ring R = k[x1, . . . , xn] over
an arbitrary field k using the edges of G.

A monomial in R is of the form m = xα1
1 · · ·xαn

n where each αi ∈ N. A monomial
m = xα1

1 · · ·xαn
n is square-free if αi = 0 or αi = 1 for each i = 1, . . . , n. We define a
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Chapter 1. Introduction 2

(square-free) monomial ideal as any ideal generated by a set of (square-free) monomials.
The monomial ideal associated to the set of edges of a finite simple graph G, called the
edge ideal, was first introduced by Villarreal in [25].

Definition 1.2. Let G be a finite simple graph on the vertex set VG = {x1, . . . , xn} with
the edge set EG. We define the edge ideal corresponding to G by

I(G) = (xixj | xixj ∈ EG).

Example 1.3. Let G be the graph shown below. We label the vertices of G with the
variables of the polynomial ring k[x1, x2, x3, x4].

x4

G

x1

x2 x3

The edge ideal corresponding to G is given by

I(G) = (x1x2, x1x3, x2x3, x3x4),

where each xixj ∈ EG.

By recognizing that an edge can also be viewed as a path of length one, we are able
to extend the idea of an edge ideal to a path ideal ; this concept was first introduced by
Conca and De Negri in [8].

Definition 1.4. Let G be a finite simple graph on the vertex set VG = {x1, . . . , xn} with
the edge set EG. We define the path ideal corresponding to G by

It(G) = (xi1 · · ·xit+1 | {xi1 , . . . , xit+1} is a path of G of length t).

So when t = 1, the path ideal of G is exactly the edge ideal corresponding to G. Path
ideals were further studied by Alilooee and Faridi [1], Bouchat, Hà, and O’Keefe [5],
Brumatti and da Silva [7], and He and Van Tuyl [19].

Every square-free monomial ideal I in R has a dual square-free monomial ideal I∨

called the Alexander dual of I. In the case that It is a path ideal, the Alexander dual is
given by

I∨t =
⋂

{xi1 , . . . , xit+1} a path of length t

(xi1 . . . xit+1).

This project focuses on the associated primes of I∨t . We say that an ideal P in a
commutative ring R is prime if whenever fg ∈ P , either f ∈ P or g ∈ P . We say
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that P is an associated prime of an ideal I if P = I : (f) for some f ∈ R, where
I : (f) = (g ∈ R | fg ∈ I) is the ideal quotient of I and (f). We denote the set of
associated primes of I by Ass(R/I).

In [6], Brodmann proved that for any ideal I in a commutative Noetherian ring R,
there exists an integer N such that

∞⋃
s=1

Ass(R/Is) =
N⋃
s=1

Ass(R/Is).

We call the smallest such N the index of stability. Although Hoa [20] was able to find
a bound on the index of stability, computing N in general is very difficult. Instead we
strive to understand when the set of associated primes of an ideal satisfies the persistence
property. We say that an ideal I ⊂ R satisfies the persistence property for associated
primes if

Ass(R/Is) ⊆ Ass(R/Is+1)

for all s ≥ 1. Martinez-Bernal, Morey, and Villarreal [21] studied this problem for the
edge ideal I(G) and Francisco, Hà, and Van Tuyl have some partial results for I(G)∨ in
[12], [13], and [14].

We are interested in the behaviour of the associated primes of I∨t for values of t ≥ 2.
In particular, we aim to generalize properties of the associated primes of (I∨t )s as s varies
when G is a tree. To simplify notation, let Jt = I∨t . When t = 1, the Alexander dual
J1, is the cover ideal of a graph G which implies that the generators of J1 are associated
to vertex covers of G. A vertex cover of a graph G is a subset W ⊆ V such that for
each e ∈ E, e ∩W 6= ∅. We will discuss the results that have been found in this case by
Francisco, Hà, and Van Tuyl [12], [13] in Chapter 4.

In general, describing the generators of Jt for values of t ≥ 2 corresponding to an
arbitrary graph G is difficult. In this project, we focused on the particular case in which
we treat a star as a tree which is not rooted at any vertex. A star is a special case of
a complete bipartite graph. A complete bipartite graph Km,n, is a bipartite graph with
vertex partition V = V1 ∪ V2 where |V1| = m and |V2| = n, such that every xi ∈ V1 and
xj ∈ V2 are adjacent, i.e., are connected by an edge. When m = 1, we say that K1,n is a
star and we call the single vertex in V1 the star’s centre. We find an expression for the
generators of J2 in the following lemma:

Lemma 1.5. Let K1,n be a star on vertex set V = {z, x1, . . . , xn} with centre z. Then

J2 = (z) + (x1 · · · x̂i · · · xn | i = 1, 2, . . . , n)

where x̂i denotes that the vertex xi is removed from the product.

We will demonstrate this idea with an example.

Example 1.6. Let K1,5 be a star on the vertex set V = {z, x1, x2, x3, x4, x5} with centre
z as shown below. When we regard K1,5 as a tree which is not rooted, we obtain the



Chapter 1. Introduction 4

2-path ideal

I2 = (x1zx2, x1zx3, x1zx4, x1zx5, x2zx3, x2zx4, x2zx5, x3zx4, x3zx5, x4zx5).

x2

K1,5

x5x4x3

z

x1

The corresponding Alexander dual of I2 is given by

J2 = (z, x1x2x3x4, x1x2x3x5, x1x2x4x5, x1x3x4x5, x2x3x4x5).

When s = 1, Ass(R/J2) is comprised of all prime ideals of the form (xi, z, xj) where i 6= j.
Then as we increase the value of s, we will find that the maximal ideal (z, x1, x2, x3, x4, x5),
appears in Ass(R/J4

2 ). Moreover, (z, x1, x2, x3, x4, x5) ∈ Ass(R/Js2) for all s ≥ 4.

The observation that (z, x1, x2, x3, x4, x5) ∈ Ass(R/Js2) for all s ≥ 4 in Example 1.6
led us to the following theorem:

Theorem 1.7. Let K1,n be a star on the vertex set V = {z, x1, . . . , xn} with centre z and
corresponding Alexander dual J2. Then

(1) (z, x1, . . . , xn) ∈ Ass(R/Js2) for all s ≥ n− 1.
(2) (z, x1, . . . , xn) /∈ Ass(R/Js2) for all s < n− 1.

The proofs of Lemma 1.5 and Theorem 1.7 can be found in Chapter 5. Using Theorem
1.7, we can describe a lower bound on the index of stability N when our given graph is a
star.

Corollary 1.8. Let K1,n be a star on the vertex set {z, x1, . . . , xn} with centre z and
Alexander dual J2. Then

N ≥ n− 1

where N denotes the index of stability of Ass(R/Js2).

Corollary 1.8 tells us that if K1,n is a star on n+ 1 vertices where n� 2, then a lower
bound on N will be quite large.

The final chapter of this project will introduce a number of open questions. The
conjectures made in Chapter 6 are based on observations made while conducting computer
experiments. Working on these problems in the future will hopefully help us to generalize
our results from Chapter 5 to a larger family of graphs.



CHAPTER 2

Some Graph Theory

We begin by introducing some basic ideas from graph theory. We are primarily con-
cerned with properties of simple graphs. In this section, we will define a simple graph and
some of its properties. There are several families of simple graphs, a few of which will
be introduced in sections 2.1, 2.2, and 2.3. The following definitions can be found in [3],
[10], [13] and [26].

Definition 2.1 (Simple Graph). A simple graph G with n vertices and m edges has a
vertex set VG = {v1, . . . , vn} and an edge set EG = {e1, . . . , em}, where each edge is an
unordered pair of distinct vertices. We denote the edge e = {u, v} by uv and if uv ∈ EG,
then we say that u and v are adjacent. We also say that a graph G is a simple graph if
G has no loops or multiple edges.

Example 2.2. In the figure below, G1 is a simple graph whereas G2 is not since there is
an edge from v1 to itself (a loop).

G1 G2

v1

v4

v1

v2 v3 v2 v3

We will often refer to a simple graph G as a finite simple graph. The word finite refers
to the fact that |VG| <∞. There are many families of finite simple graphs which will be
discussed throughout the rest of this chapter. However, in Chapters 4 and 5 we will focus
mainly on the properties of trees (Definition 2.19).

From now on, unless it is necessary to specify, we will write G = (VG, EG) to denote
a simple graph G on a finite vertex set VG with an arbitrary edge set EG.

Definition 2.3 (Path). Let u and v be (not necessarily distinct) vertices of a graph G.
A u-v path is an alternating sequence of vertices and edges beginning at u (called the

5



Chapter 2. Some Graph Theory 6

start vertex ) and ending at v (called the end vertex ) such that no vertex is repeated. The
length of a u-v path is the number of edges in the sequence. We represent a u-v path of
G on the vertices u = v1, v2, . . . , vk = v ∈ VG by v1v2 · · · vk where each vivi+1 ∈ EG for
1 ≤ i ≤ k − 1.

Definition 2.4 (Connected Graph). Let G = (VG, EG). We say that G is connected if
there exists a u-v path for every pair of vertices u, v ∈ VG.

We illustrate the definitions of a path and a connected graph in the following example:

Example 2.5. Suppose that G is the connected graph shown below on the vertex set
VG = {v1, v2, v3, v4} with the edge set EG = {v1v2, v1v3, v2v3, v3v4}. It is easy to see that
for any pair of vertices vi, vj ∈ VG, we can find a vi-vj path of G. For example a v1-v4

path of length 2 is given by v1v3v4.

G

v1

v2 v3

v4

Every graph G = (VG, EG) is either directed or undirected. If G is undirected, we can
assign an orientation to each e ∈ EG and obtain a directed graph. We define a directed
graph and an orientation of an undirected graph below and give an example.

Definition 2.6 (Directed Graph). A directed graph (or digraph) is a graph G on a vertex
set VG with an edge set EG such that there exist two maps init : EG → VG and ter : EG →
VG assigning every edge e to an initial vertex init(e) and a terminal vertex ter(e). The
edge e is said to be directed from init(e) to ter(e).

Definition 2.7 (Orientation). A directed graph D is an orientation of an (undirected)
graph G if VD = VG and ED = EG, and if {init(e), ter(e)} = {u, v} for every edge e = uv.
An oriented graph arises from an undirected graph G by directing every e ∈ EG from one
of its ends to the other, i.e., if e = uv then we will direct e from u to v or from v to u for
every e ∈ EG. If e is directed from u to v then we denote the directed edge e by (u, v).

Example 2.8. Let G = (VG, EG) be the undirected graph as shown below. Then EG =
{e1 = v1v2, e2 = v1v3, e3 = v1v4, e4 = v2v3}. We will assign an orientation to every ei ∈ EG
to obtain the directed graph D.

First we let VD = VG and ED = EG. Now we assign the following orientation to the
edges
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• {init(e1), ter(e1)} = {v1, v2}
• {init(e2), ter(e2)} = {v1, v3}
• {init(e3), ter(e3)} = {v1, v4}
• {init(e4), ter(e4)} = {v2, v3}.

Under this orientation, D is a directed graph. The arrows in D correspond to the orien-
tation of each edge and we denote the edge set ofD byED = {(v1, v2), (v1, v3), (v1, v4), (v2, v3)}.

G

v3 v3

v1v1

v4v4

v2 v2

D

There exist smaller graphs within a given graph G. We call these graphs subgraphs of
G. Later in this chapter we will see how to determine various properties of the graph G
by studying its subgraphs. Below, we define subgraphs as well as give an example.

Definition 2.9 ((Induced) Subgraph). Let G = (VG, EG). A subgraph of G is a graph
H such that VH ⊆ VG and EH ⊆ EG. We write H ⊆ G. A subgraph H is an induced
subgraph of G if H contains all edges uv ∈ EG with u, v ∈ VH .

Given a graph G = (VG, EG), we often consider the induced subgraph on a subset
W ⊆ VG. We denote the induced subgraph on W by GW . We demonstrate this concept
in the following example:

GW

v1

v5v2

v3 v4 v3 v4

v5

v1

G
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Example 2.10. Let G be the graph shown above on the left on the vertex set
VG = {v1, v2, v3, v4, v5} with the edge set

EG = {v1v2, v1v3, v1v4, v1v5, v2v3, v2v4, v2v5, v3v4, v3v5, v4v5}.
Consider the subset W = {v1, v3, v4, v5} ⊂ VG. The induced subgraph GW is given above
on the right with the edge set

EGW
= {v1v3, v1v4, v1v5, v3v4, v3v5, v4v5}.

We conclude this section by defining a (minimal) vertex cover of a graph G and giving
an example. We will be using Definition 2.11 several times throughout the rest of this
project.

Definition 2.11 ((Minimal) Vertex Cover). Let G be a finite simple graph on the vertex
set VG with the edge set EG. A subset W ⊆ VG is a vertex cover of G if for every e ∈ EG,
e ∩W 6= ∅. We say that W is a minimal vertex cover of G if no proper subset of W is a
vertex cover of G.

Example 2.12. Let G be the graph on the vertex set VG = {v1, v2, v3, v4, v5} with the
edge set EG = {v1v2, v1v3, v1v4, v2v3, v3v4, v4v5} shown below. We claim that a minimal
vertex cover of G is given by W = {v1, v3, v5}. To see this, we first need to check that
W is in fact a vertex cover of G. To simplify notation, let e1 = {v1, v2}, e2 = {v1, v3},
e3 = {v1, v4}, e4 = {v2, v3}, e5 = {v3, v4}, and e6 = {v4, v5}. We have that

W ∩ e1 = {v1}, W ∩ e2 = {v1, v3}, W ∩ e3 = {v1},
W ∩ e4 = {v3}, W ∩ e5 = {v3}, and W ∩ e6 = {v5}.

Since W ∩ ei 6= ∅ for each i = 1, . . . , 6, W is a vertex cover of G.

v1

G

v2

v4

- vertex in W

v5

v3

To check that W is a minimal vertex cover of G, we need to check that no proper
subset of W is a vertex cover of G. There are seven proper subsets of W , namely ∅, {vj}
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for j = 1, 3, 5, {v1, v3}, {v1, v5}, and {v3, v5}. Clearly, ∅ ∩ ei = ∅ for all i and therefore ∅
is not a vertex cover of G. Then since

{v1} ∩ e4 = {v3} ∩ e1 = {v5} ∩ e1 = ∅,
the sets {v1}, {v3}, and {v5} do not satisfy the definition of a vertex cover of G. Finally,

{v1, v3} ∩ e6 = {v1, v5} ∩ e4 = {v3, v5} ∩ e1 = ∅
and hence {v1, v3}, {v1, v5}, and {v3, v5} are not vertex covers of G. Since W is a vertex
cover of G and no proper subset of W is a vertex cover of G, we can conclude that W is
a minimal vertex cover of G.

1. Cycles, Cliques, and Trees

In this section we introduce three special families of graphs, namely cycles, cliques
and trees.

Definition 2.13 (Cycle of Order n). A cycle of order n, denoted Cn, is a finite simple
graph with the vertex set VCn = {v1, . . . , vn} and the edge set ECn = {v1v2, v2v3, . . . , vnv1}.

Example 2.14. The cycles of orders 3, 4, and 5, respectively, are shown below.

v1

v3 v4v2

v2

v1v1 v2

v3

v5

v3v4

C3 C4 C5

A cycle of order n is a subgraph of a clique on n vertices (Definition 2.15). We will
see in Example 2.17 how we can obtain a clique by adding edges to a cycle Cn.

Definition 2.15 (Clique). A simple graph G = (VG, EG) is a clique (or a complete graph)
if for every pair of vertices u, v ∈ VG, u and v are adjacent, i.e., uv ∈ EG. We denote a
clique on n vertices by Kn.

Definition 2.16 (Clique Number). The clique number of a graph G is the size of the
largest induced clique of G. We denote the clique number of G by ω(G).

Example 2.17. The cliques of size 3, 4 and 5, respectively, are shown below. By com-
paring these figures with the cycles in Example 2.14, we can see that C3 is in fact a
clique of size 3, that is, K3. If we add the edges v1v3 and v2v4 to C4 and the edges
v1v3, v1v4, v2v4, v2v5 and v3v5 to C5, we obtain K4 and K5 respectively.
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K5

v3 v4v2

v2

v1v1 v2

v3

v5

v3v4

v1

K3 K4

Example 2.18. We can see that the largest induced clique of G1 (see figure below) is of
size 2 (an edge) so ω(G1) = 2. Although G2 has both K3 and K4 as induced subgraphs,
the size of the largest induced clique of G2 is 4 and hence ω(G2) = 4.

ω(G1) = 2

G2G1

ω(G2) = 4

Definition 2.19 (Tree). A tree Γ is a connected graph which does not contain any cycle
as an induced subgraph. We say that Γ is rooted if there is a designated vertex vk such
that every vi-vj path is naturally oriented away from vk. If Γ has no such root, then we
say that Γ is not rooted.

Example 2.20. Let Γ1 = (VΓ1 , EΓ1) and Γ2 = (VΓ2 , EΓ2), where

VΓ1 = VΓ2 = {v1, v2, v3, v4, v5, v6},

EΓ1 = {v1v2, v1v3, v2v4, v2v5, v4v6},
and

EΓ2 = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v4, v6)}.

The graph Γ1 is an example of a tree which is not rooted while Γ2 is rooted at the
vertex v1. In the graph Γ2, we represent the orientation of the edges with arrows while in
the edge set EΓ2 , the ordered pair (vi, vj) implies that an edge is directed from vi to vj.

In Γ1 we can take the v2-v3 path v2v1v3 whereas in Γ2 we cannot since every path
of Γ2 must be oriented away from v1. There are three paths of length 2 in Γ2; they are
(v1, v2, v4), (v1, v2, v5), and (v2, v4, v6) (note that for a path of length 2 in Γ2, we have used



Chapter 2. Some Graph Theory 11

the triple (vi, vj, vk) to denote a directed path from vi to vk, where (vi, vj) and (vj, vk) are
directed edges).

v1

Γ1 Γ2

v6

v4

v2

v1

v3

v5

v6

v4 v5

v2 v3

In Example 2.20, we can easily see that the largest induced clique of both Γ1 and Γ2

is of size 2 (an edge) so ω(Γ1) = ω(Γ2) = 2. We conclude this section by showing that
ω(Γ) = 2 for any tree Γ.

Lemma 2.21. If Γ is a tree, then ω(Γ) = 2.

Proof. Let Γ be a tree. Suppose that ω(Γ) 6= 2. Then ω(Γ) = k ≥ 3, i.e. Γ contains
an induced clique of size k ≥ 3. Let W = {vi1 , . . . , vik} ⊆ VΓ be the vertex set of the
induced clique of Γ of size k. Then by definition, every pair of vertices vir , vis ∈ W is
adjacent. In particular, vi1vi2 , vi2vi3 , . . . , vik−1

vik are all edges in EW ⊆ EG. In addition,
vikvi1 ∈ EW . So we have a cycle

vi1vi2 · · · vikvi1
in Γ. This contradicts the assumption that Γ is a tree. Hence, Γ contains no cliques of
size k ≥ 3 and thus ω(Γ) = 2. �

2. Bipartite Graphs

In this section we define and establish several properties of a large family of graphs
called bipartite graphs.

Definition 2.22 (k-partite Graph). Let k ≥ 2 be an integer. A graph G = (VG, EG) is
k-partite if there exists a partition VG = V1 ∪ · · · ∪ Vk such that for every e = uv ∈ EG,
u ∈ Vi and v ∈ Vj where i 6= j. We call V1, . . . , Vk classes of the partition.

We will consider specifically the case where k = 2. We call a 2-partite graph bipartite.
Here we give some examples of bipartite graphs.
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Example 2.23. (1) The cycle of order 4, C4, is a bipartite graph. To see this, consider
the partition of the vertex set VC4 into V1 = {v1, v3} and V2 = {v2, v4}. Then e 6⊆ Vi for
i = 1, 2, for any e ∈ EC4 . So C4 satisfies the definition of a bipartite graph. In the figure
below, the vertices in V1 are circled with a dotted line and the vertices in V2 are circled
with a solid line.

v2

C4

- vertex in V1

- vertex in V2

v3v4

v1

In fact, any Cn of even order is bipartite. We prove this in Corollary 2.27.

(2) Let Γ be the tree shown below on the vertex set VΓ = {v1, v2, v3, v4, v5, v6, v7}
with the edge set EΓ = {v1v2, v1v3, v1v4, v3v5, v4v6, v6v7}. We can partition VΓ into
V1 = {v2, v3, v4, v7} and V2 = {v1, v5, v6} to see that Γ is a bipartite graph.

v2

Γ

v1

v5 v6

v3 v4

- vertex in V1

- vertex in V2

v7
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In Corollary 2.28, we prove that all trees are bipartite.

(3) We will show that C5 is not bipartite. Let C5 be the cycle of order 5 shown below on
the vertex set VC5 = {v1, v2, v3, v4, v5} with the edge set EC5 = {v1v2, v2v3, v3v4, v4v5, v5v1}.
Now suppose that C5 is bipartite. Then there exists a partition VC5 = V1 ∪ V2 such that
e 6⊆ Vi for i = 1, 2 for any e ∈ EC5 . Without loss of generality, let v1 ∈ V1. Then since
v1v2 ∈ EC5 , we must have that v2 ∈ V2. Now v2v3 ∈ EC5 so v3 ∈ V1. Similarly v4 ∈ V2

and v5 ∈ V1. But then v1, v5 ∈ V1 and v5v1 ∈ EC5 , which contradicts the assumption that
C5 is bipartite. Hence C5 is not bipartite. We prove in Theorem 2.26 that any graph G
containing an odd induced cycle is not bipartite.

- vertex in V2

C5

v2

v1

v3

v5

- vertex in V1

v4

We will now define a complete bipartite graph and give an example.

Definition 2.24 (Complete Bipartite Graph). Let G = (VG, EG) be a bipartite graph
with vertex partition V = V1 ∪ V2. If for every u ∈ V1 and v ∈ V2, u and v are adjacent,
(that is, uv ∈ EG), then we say that G is a complete bipartite graph. We denote a complete
bipartite graph by Km,`, where m = |V1| and ` = |V2|.

Example 2.25. In Example 2.23(1), we saw that C4 is a bipartite graph. Here, we will
show that C4 is in fact the complete bipartite graph K2,2. Let VC4 = {v1, v2, v3, v4} denote
the vertex set of C4 with the edge set EC4 = {v1v2, v2v3, v3v4, v4v1}. We want to find a
vertex partition VC4 = V1∪V2 such that |V1| = |V2| = 2 and for every vi ∈ V1 and vj ∈ V2,
vivj ∈ EC4 . Let v1 ∈ V1. Then since v1 is adjacent to both v2 and v4, let v2, v4 ∈ V2.
Since we require |V1| = 2, let v3 ∈ V1. So the sets in our partition are V1 = {v1, v3}
and V2 = {v2, v4}. We need to check that every vi ∈ V1 and vj ∈ V2 are adjacent. We
know that v1 is adjacent to both v2 and v4 in V2 by the way we chose our partition.
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Now v2v3 ∈ EC4 and v3v4 ∈ EC4 so v3 is adjacent to every vertex in V2. It follows that
C4 = K2,2. The graphs are shown below.

- vertex in V2

v2 v4

C4 K2,2

- vertex in V1

v1

v4

v2

v3v1

v3

Theorem 2.26. A connected finite simple graph G is bipartite if and only if G contains
no odd cycles.

Proof. Suppose thatG is a bipartite graph with the vertex set VG and the edge set EG
and suppose thatG contains an odd induced cycle C2k−1 on the vertices {vi1 , . . . , vi2k−1

} for
some k ≥ 2. Since G is bipartite, there exists subsets V1, V2 ⊆ V such that V = V1 ∪ V2

and e 6⊆ Vi for i = 1, 2 and for any e ∈ EG. Without loss of generality, suppose that
vi1 ∈ V1. Then since vi1vi2 ∈ EG we must have that vi2 ∈ V2. Now consider the edge
vi2vi3 . Since vi2 ∈ V2, we have that vi3 ∈ V1. Continuing in this way we will have that
vi2`−1

∈ V1 and vi2` ∈ V2 for all ` ≥ 1. Now we consider the edge vi1vi2k−1
that closes

the cycle. We know that vi1 ∈ V1 and since vi2k−1
has an odd index, we must have that

vi2k−1
∈ V1. But now we have an edge in V1 which contradicts the fact that G is bipartite.

Hence, G contains no odd cycles.

Now suppose that G contains no odd cycles and fix a vertex u ∈ VG. We claim that
the following partition will make G bipartite:

• V1 = {v ∈ VG | shortest u− v path has even length}
• V2 = {w ∈ VG | shortest u− w path has odd length}.

Note that u ∈ V1. Now since every path must be of either even or odd length, we have
VG = V1 ∪ V2 and since a path cannot be both even and odd, V1 ∩ V2 = ∅. So we need
to show that e 6⊆ Vi for i = 1, 2 for any e ∈ EG. We do this by contradiction. Suppose
that v, w ∈ V1 such that vw ∈ EG. Let P and Q be the shortest u − v and u − w paths
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respectively, say

P = u1, u2, . . . , u2m+1 Q = w1, w2, . . . , w2n+1

where u = u1 = w1, v = u2m+1, and w = w2n+1. Let w′ denote the last common vertex of
P and Q. (Such a vertex exists since P and Q always have vertex u in common. We also
note that if v = w, then w′ = v = w.) Then the part of P from u to w′ is the shortest
u − w′ path and similarly the part of Q from u to w′ is the shortest u − w′ path. Since
these paths must have the same length, there exists an index i such that w′ = ui = wi.
But then

C = ui, ui+1 · · ·u2m+1︸ ︷︷ ︸
∗

w2n+1w2n · · ·wi︸ ︷︷ ︸
∗∗

is a cycle. Now if i is odd, then both ∗ and ∗∗ have even length and if i is even, both ∗
and ∗∗ have odd length. So the length of C has parity

even + 1 + even = odd or
odd + 1 + odd = odd.

We have found an odd cycle of G which is a contradiction. So we cannot have v, w ∈ V1

where vw ∈ EG. Using the same argument, we can show that e 6⊆ V2 for any e ∈ EG.
Thus, G is bipartite. �

Corollary 2.27. Even cycles are bipartite.

Proof. Since an even cycle will not contain an odd cycle, it follows immediately from
Theorem 2.26 that even cycles are bipartite. �

Corollary 2.28. Trees are bipartite.

Proof. Let Γ be a tree. By definition, Γ contains no odd cycles. It follows from
Theorem 2.26 that Γ is bipartite. �

3. Graph Colourings

In this section we describe a colouring of a graph G and establish the chromatic number
of bipartite graphs.

Definition 2.29 (d-colouring). Let G = (VG, EG) be a finite simple graph. Then a d-
colouring is any partition, VG = C1 ∪ · · · ∪ Cd into d disjoint sets such that for every
e ∈ EG, we have e 6⊆ Ci for all i = 1, . . . , d. We call the Ci’s the colour classes of a
d-colouring.

Definition 2.30 (Chromatic Number). Let G be a finite simple graph. The chromatic
number χ(G), of G is the minimum number of colours needed to colour the vertices of G
such that no two adjacent vertices receive the same colour. If χ(G) = d, then we say that
G is d-chromatic.
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Definition 2.31 (Critically d-chromatic). We say that G is critically d-chromatic if
χ(G) = d but for every v ∈ VG, χ(G \ {v}) < d, where G \ {v} is the graph G with
the vertex v and every edge containing v removed.

Example 2.32. Consider the cycle of order 5 as shown below. We can label the vertices
of the cycle using three colours so C5 is 3-chromatic.

We are curious as to whether or not C5 is critically 3-chromatic so we remove vertex
v. Now we can colour C5 \ {v} with two colours so χ(C5 \ {v}) = 2 < 3. Similarly, if we
remove any other vertex u from C5 we can colour C5 \ {u} with only two colours. Hence,
C5 is critically 3-chromatic.

remove vertex v

C5

BlueGreen Blue

C5 \ {v}

v

Blue Blue

Red

Red

Red

Red

We conclude this section by showing that bipartite graphs, and consequently trees,
are 2-chromatic.

Theorem 2.33. If G = (VG, EG) is a bipartite graph, then χ(G) = 2.

Proof. Since G is bipartite, there exists independent sets V1, V2 that partition VG so
we can write VG = V1 ∪ V2. Now let C1 = V1 and C2 = V2. We claim that we need at
least two colours to colour the vertices of G such that no two adjacent vertices receive
the same colour, i.e., χ(G) = 2. Seeking a contradiction, suppose that χ(G) = 1. Let C1

represent this colour class and let u ∈ C1. Now consider uv ∈ EG. Since G is bipartite,
we must have that v ∈ V2. However, χ(G) = 1 so v must receive the same colour as u,
i.e., v ∈ C1 = V1. Now uv ∈ EG and {u, v} ⊆ V1 which contradicts the fact that G is
bipartite. Hence, χ(G) = 2. �

Corollary 2.34. Let Γ = (VΓ, EΓ) be a tree. Then χ(Γ) = 2.

Proof. It follows from Corollary 2.28 that Γ is bipartite. Then by Theorem 2.33, we
can conclude that χ(Γ) = 2. �



CHAPTER 3

Commutative Algebra: Primary Decomposition and Monomial

Ideals

We move away from graph theory for a moment to introduce the tools we will be
using from commutative algebra. Throughout this section let R = k[x1, . . . , xn] be the
polynomial ring over an arbitrary field k. We will be using definitions from [11], [15] and
[18].

Here we introduce various types of ideals I ⊂ R and define the associated primes of
an ideal I.

Definition 3.1 (Ideal). Let I ⊂ R. Then I is an ideal of R if

(1) I 6= ∅,
(2) f − g ∈ I for all f, g ∈ I, and
(3) hf ∈ I for all h ∈ R and f ∈ I.

Let {f1, . . . , fr} be a finite collection of polynomials in R. If

I = {g1f1 + · · ·+ grfr | gi ∈ R},

then we say that I is generated by f1, . . . , fr and we write

I = (f1, . . . , fr).

Definition 3.2 (Principal Ideal). Let I ⊂ R be an ideal. If I = (f) for some f ∈ R, then
I is a principal ideal.

Example 3.3. Let I = (x, x3, xy) ⊂ k[x, y]. We claim that I is a principal ideal generated
by x. We use double inclusion to show that I = (x). Since x divides every generator of I,
we have that I ⊆ (x). Then since x ∈ I, it follows that (x) ⊆ I and we have the second
inclusion. Hence, I = (x) is a principal ideal.

Definition 3.4 (Maximal Ideal). Let I, J ⊂ R be ideals. We say that I is a maximal
ideal of R if whenever I ⊂ J ⊂ R, either J = I or J = R.

Example 3.5. We claim that the ideal (x1, . . . , xn) ⊂ R is maximal. To see this,
we suppose that (x1, . . . , xn) is not maximal. Then there exists an ideal J , where
(x1, . . . , xn) ⊂ J ⊂ R, such that J 6= (x1, . . . , xn) and J 6= R. Note that (x1, . . . , xn) 6= R
since 1 ∈ R but 1 /∈ (x1, . . . , xn). Let f ∈ J \ (x1, . . . , xn). Then f cannot have terms
that include any of the xi’s since if it did, then f would be in I. So f = c for some c ∈ k
such that c 6= 0 (since if c = 0, then c ∈ (x1, . . . , xn)). Then f = c ∈ J which implies that

17
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1
c
· c = 1 ∈ J . This contradicts the assumption that J 6= R. Hence, no such J exists and

(x1, . . . , xn) is a maximal ideal in R.

Definition 3.6 (Prime Ideal). Let I ⊂ R be an ideal. Then I is prime if whenever
fg ∈ I, either f ∈ I or g ∈ I.

Lemma 3.7. Maximal ideals are prime ideals.

Proof. Let M ⊂ R be a maximal ideal and let fg ∈ M such that f /∈ M . Then
since M is maximal, we have that M + (f) = (1). So there is m ∈ M and h ∈ R such
that m+ hf = 1. Now

g = 1 · g = (m+ hf)g = mg + hfg.

Since m ∈ M and fg ∈ M , we obtain that mg and hfg are in M by the absorption
property of ideals and since ideals are closed under addition, we have mg+hfg = g ∈M .
Hence, M is a prime ideal in R. �

Lemma 3.8. Any ideal generated by a subset of the variables of R is prime, i.e.,

I = (xi1 , . . . , xir | {xi1 , . . . , xir} ⊆ {x1, . . . , xn})

is a prime ideal of R for any subset {xi1 , . . . , xir} ⊆ {x1, . . . , xn}.

Proof. Let I = (xi1 , . . . , xir) ⊆ k[x1, . . . , xn] be an ideal. We will to show that I
is prime by showing that R/I is an integral domain. Let a + I, b + I ∈ R/I such that
ab + I = 0 + I and a + I 6= 0 + I. We will use a proof by contradiction. Suppose that
b+ I 6= 0 + I. Then a and b have at least one term g and h respectively, not divisible by
xij for any xij generating I. Write

a = g +
∑
α

cαx
α and b = h+

∑
β

cβx
β

where g, h /∈ I, cα, cβ ∈ k[x1, . . . , xn] and xα = xa1i1 · · ·x
ar
ir

, xβ = xb1i1 · · ·x
br
ir

where each
ai, bj ≥ 0. Then

ab = gh+ g
∑
β

cβx
β + h

∑
α

cαx
α + (

∑
β

cβx
β)(
∑
α

cαx
α).

By the absorption property of ideals, g
∑

β cβx
β and h

∑
α cαx

α are in I and since I is

closed under multiplication, (
∑

β cβx
β)(
∑

α cαx
α) ∈ I. Since g /∈ I and h /∈ I, we have

that gh /∈ I. But this contradicts the fact that ab ∈ I, since ab + I = 0 + I. So we must
have that b+ I = 0 + I and hence R/I is an integral domain. It follows that I is a prime
ideal in k[x1, . . . , xn]. �

We have ways to construct new ideals from existing ones. One of these new construc-
tions is described in the following definition:
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Definition 3.9 (Ideal Quotient). Let I, J be ideals in R. Then the ideal quotient of I
and J is defined by

I : J = {f ∈ R | fj ∈ I for each j ∈ J}.

Lemma 3.10. Let I, J ⊂ R be ideals. Then the ideal quotient I : J is an ideal.

Proof. Let I and J be ideals in R. We will first show that I : J 6= ∅. Take 0 ∈ R.
Since I is an ideal we know that 0 ∈ I. We have

0 = 0j ∈ I
for all j ∈ J . It follows that 0 ∈ I : J . Now suppose that f, g ∈ I : J . Then fj, gj ∈ I for
all j ∈ J . Since I is an ideal, we know by Definition 3.1(2) that fj − gj ∈ I. So we have

fj − gj = (f − g)j ∈ I
for all j ∈ J . By the definition of the ideal quotient, f − g ∈ I : J . Finally let h ∈ R and
f ∈ I : J . Then fj ∈ I for all j ∈ J . From Definition 3.1(3) we know that h(fj) ∈ I.
Then

h(fj) = (hf)j ∈ I
for all j ∈ J . Hence hf ∈ I : J . From Definition 3.1 we can conclude that I : J is an
ideal. �

The construction of the ideal quotient leads us to the following definition of the asso-
ciated primes of an ideal I.

Definition 3.11 (Associated Prime). Let I ⊂ R be an ideal and J = (f) ⊂ R a principal
ideal. If (I : J) = P is prime, then we say that P is an associated prime of I. We say that
f is the annihilator of I and we denote the set of associated primes of I by Ass(R/I).

Example 3.12. Let I = (x1x2, x1x3, x2x3) be an ideal of R. Let g1 = x1, g2 = x2, and
g3 = x3 be three polynomials in R. Now we construct the ideal quotients

• I : (x1) = (x2, x3)
• I : (x2) = (x1, x3)
• I : (x3) = (x1, x2).

We know from Lemma 3.8 that each of these ideals is prime. To simplify notation, we let
P1 = (I : x1), P2 = (I : x2), and P3 = (I : x3). Then P1, P2, P3 ∈ Ass(R/I). In fact these
are all of the associated primes of I; that is, Ass(R/I) = {P1, P2, P3}.

1. Primary Decomposition

Our goal in this section is to show that any proper ideal I ⊂ R can be written as the
finite intersection of primary ideals. The content of this section can be found in [2], [11],
[18], and [23].

Definition 3.13 (Primary Ideal). Let Q ⊂ R be an ideal. We say that Q is primary if
whenever fg ∈ Q, either f ∈ Q or gm ∈ Q for some integer m ≥ 1.
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Lemma 3.14. Prime ideals are primary.

Proof. Let P ⊂ R be a prime ideal such that fg ∈ P . Since P is prime, we know
that either f ∈ P or g ∈ P . If f ∈ P , then we are done. So suppose that f /∈ P . Then
we know that g ∈ P which implies that gm ∈ P for any integer m ≥ 1. It follows that P
is primary. �

Definition 3.15 (Radical of I). Let I ⊂ R be an ideal and define
√
I = {f ∈ R | fn ∈ I for some integer n ≥ 1}.

We call
√
I the radical of I.

Lemma 3.16. Let I ⊂ R be an ideal. Then
√
I is an ideal.

Proof. Since I is an ideal, we know that 01 ∈ I so 0 ∈
√
I. Now let f, g ∈

√
I. Then

by definition fm, gn ∈ I for some m,n ≥ 1. Consider k = m+ n− 1 ≥ 1. We claim that
(f − g)k ∈ I. We use the Binomial Theorem to expand (f − g)k and we obtain

(f − g)k =
(
k
0

)
(−1)kgk +

(
k
1

)
f(−1)k−1gk−1 + · · ·+

(
k
k

)
fk

=
(
m+n−1

0

)
(−1)m+n−1gm+n−1 +

(
m+n−1

1

)
f(−1)m+n−2gm+n−2 + · · ·+

(
m+n−1
m+n−1

)
fm+n−1.

Now since either i ≥ m or m + n − 1 − i ≥ n for each i, we have that every term of the
expansion is either a multiple of fm or gn so (f − g)k ∈ I. It follows by definition that

f − g ∈
√
I. Finally, suppose that f ∈

√
I and h ∈ R. Then fm ∈ I for some m. By

the properties of R we know that hm ∈ R and by the absorption property of I we have
fmhm = (fh)m ∈ I. It follows that fh ∈

√
I and

√
I is an ideal. �

Definition 3.17 (P -primary Ideal). If Q ⊂ R is a primary ideal and
√
Q = P for some

prime ideal P , then we say that Q is P -primary.

Lemma 3.18. If P ⊂ R is a prime ideal, then
√
P = P .

Proof. We will use a proof by double inclusion. Let f ∈
√
P . Then fm ∈ P for some

integer m. We can write fm = f · fm−1. Since P is prime, either f ∈ P or fm−1 ∈ P . If
f ∈ P , then we are done. If fm−1 ∈ P then we can write fm−1 = f · fm−2. Again since P
is prime, either f ∈ P or fm−2 ∈ P . Continuing in this way, we deduce that f ∈ P and
we have the first inclusion. Now let g ∈ P . Then gm ∈ P for any integer m and hence
g ∈
√
P . So

√
P ⊇ P and equality follows by double inclusion. �

Lemma 3.19. Let Q ⊂ R be a primary ideal. Then
√
Q is a prime ideal P . Furthermore,

P is the smallest prime ideal of R containing Q.

Proof. Let Q be a primary ideal in R. We want to show that
√
Q is prime. Suppose

that ab ∈
√
Q. Then (ab)m = ambm ∈ Q for some integer m. Since Q is primary we have

that either am ∈ Q or (bm)n = bmn ∈ Q for some n. It follows by definition that a ∈
√
Q

or b ∈
√
Q and thus

√
Q is prime.

To show that P is the smallest prime ideal containing Q suppose that there is some
prime ideal P ′ ⊂ R such that P ′ 6= P and Q ⊆ P ′. Taking the radical of Q and P ′ we
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obtain that
√
Q ⊆

√
P ′. Since Q is P -primary, we have P =

√
Q and by Lemma 3.18√

P ′ = P ′ so we have P =
√
Q ⊆

√
P ′ = P ′. So if P ′ is a prime ideal containing Q then

P ′ must contain P and the result follows. �

Lemma 3.20. Let Q1, . . . , Qs be P -primary ideals in R. Then

Q1 ∩ · · · ∩Qs

is P -primary.

Proof. We want to show that
√
Q1 ∩ · · · ∩Qs = P . First we will show that√

Q1 ∩ · · · ∩Qs =
√
Q1 ∩ · · · ∩

√
Qs

by double inclusion. Let f ∈
√
Q1 ∩ · · · ∩Qs. Then fm ∈ Q1∩· · ·∩Qs for some integer m.

So fm ∈ Qi for each i. This implies that f ∈
√
Qi for each i and hence f ∈

√
Q1∩· · ·∩

√
Qs.

So
√
Q1 ∩ · · · ∩Qs ⊆

√
Q1 ∩ · · · ∩

√
Qs. Now suppose that f ∈

√
Q1 ∩ · · · ∩

√
Qs. Then

f ∈
√
Qi for each i. By definition, fni ∈ Qi for each i where ni is an integer. So

fn1 · · · fns = fn1+···+ns ∈ Q1 ∩ · · · ∩ Qs. It follows that f ∈
√
Q1 ∩ · · · ∩Qs and we have

the second inclusion.

Now we have√
Q1 ∩ · · · ∩Qs =

√
Q1 ∩ · · · ∩

√
Qs

= P ∩ · · · ∩ P (since
√
Qi = P for each i)

= P

So Q1 ∩ · · · ∩Qs is P -primary. �

Lemma 3.21. Let Q ⊂ R be a P -primary ideal and let f ∈ R.

(1) If f ∈ Q, then
√

(Q : (f)) = R.

(2) If f /∈ Q, then
√

(Q : (f)) = P .
(3) If f /∈ P , then Q : (f) = Q.

Proof. (1) Let f ∈ Q. Then fg ∈ Q for any g ∈ R so it follows by definition that

Q : (f) = R. Then
√

(Q : (f)) =
√
R = R and we are done.

(2) Suppose that f /∈ Q. We will show that
√

(Q : (f)) = P by double inclusion. Let

g ∈
√

(Q : (f)). Then gm ∈ Q : (f) for some integer m. By definition, gmf ∈ Q but
since f /∈ Q and Q is primary, we must have that (gm)k = gmk ∈ Q for some k. Then
g ∈
√
Q = P since Q is P -primary. So we have our first inclusion. Now let h ∈ P =

√
Q.

We have hm ∈ Q for some m. By the absorption property of ideals, hmf ∈ Q which implies
that hm ∈ Q : (f). By definition, h ∈

√
(Q : (f)) and we have the second inclusion.

(3) We always have Q : (f) ⊇ Q so we only need to show that Q : (f) ⊆ Q. Let
g ∈ Q : (f). Then gf ∈ Q ⊆

√
Q = P . By assumption, f /∈ P and P is prime so we must

have that g ∈ P =
√
Q. We claim that g ∈ Q. Seeking a contradiction, suppose that

g /∈ Q. Since Q ⊆ Q : (f), we have that g /∈ Q : (f) which implies that gf /∈ Q. This
contradicts the fact that gf ∈ Q so we must have that g ∈ Q and we have the second
inclusion. �
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Lemma 3.22. Suppose that P ⊂ R is prime. If P = P1∩· · ·∩Ps where each Pi is prime,
then P = Pi for some i.

Proof. Suppose that P is a prime ideal in R such that

P = P1 ∩ · · · ∩ Ps

where each Pi is prime. Clearly, P ⊆ Pi for each i so it is enough to show that P ⊇ Pi
for some i. We will do so by contradiction. Suppose that P ( Pi for all i. Then for each
i there is fi ∈ Pi such that fi /∈ P . So f1 · · · fs ∈ P1 ∩ · · · ∩ Ps = P . Since P is prime, we
must have that fi ∈ P for some i. This contradicts our assumption that fi /∈ P for all i.
Hence P = Pi for some i. �

Definition 3.23 (Irreducible Ideal). Let I ⊂ R be a proper ideal. We say that I is
irreducible if whenever J,K ⊂ R are ideals such that

I = J ∩K

we have I = J or I = K.

In Lemma 3.24, we will show that any proper ideal can be written as the intersection of
irreducible ideals. The proof uses the fact that R is a Noetherian ring which we define in
Definition 4.1. The reader should review this definition before proceeding. The definition
can also be found in [11].

Lemma 3.24. Let I ⊂ R be a proper ideal. Then we can write

I = I1 ∩ · · · ∩ Ir

where each Ii is an irreducible ideal.

Proof. We will use a proof by contradiction. Suppose that there is a nonempty
collection of ideals I that cannot be written as a finite intersection of irreducible ideals.
Since R is Noetherian, there exists a maximal element I in I. Since I is reducible, we
can write I = J ∩K for some ideals J,K such that J 6= I and K 6= I. We always have
I ⊂ J and I ⊂ K but since I is maximal in I, we must have that J /∈ I and K /∈ I. So
J and K can be written as finite intersections of irreducible ideals say

J = J1 ∩ · · · ∩ Js and K = K1 ∩ · · · ∩Kt

where each J`, Km are irreducible. Then

I = J ∩K = J1 ∩ · · · ∩ Js ∩K1 ∩ · · · ∩Kt.

So I can be written as a finite intersection of irreducible ideals. This contradicts the fact
that I ∈ I. So we must have that I = ∅ and hence every ideal in R can be written as a
finite intersection of irreducible ideals. �

Lemma 3.25. If I ⊂ R is an irreducible ideal, then I is primary.
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Proof. Suppose that I is irreducible and let fg ∈ I such that f /∈ I. Consider the
ascending chain of ideals

I ⊂ I : (g) ⊂ I : (g2) ⊂ · · · .
Since the polynomial ring R is Noetherian, there exists an integer N such that

I : (gN) = I : (gN+1) = · · · .
We claim that

I = (I + (gN)) ∩ (I + (f)).

We will prove this by double inclusion. It is easy to see that I ⊆ I+(gN) and I ⊂ I+(f).
So I ⊆ (I + (gN)) ∩ (I + (f)) and we have our first inclusion. Now suppose that h ∈
(I + (gN)) ∩ (I + (f)). Then since h ∈ I + (gN), we can write

h = i+ h′gN

for some i ∈ I and h′ ∈ R. Since fg ∈ I we have that g(I + (f)) ⊆ I. In particular,
gh ∈ I so multiplying h by g, we have that gh = gi+ h′gN+1. Rearranging, we obtain

h′gN+1 = gh− gi
where gh ∈ I and gi ∈ I. Hence h′gN+1 ∈ I. By definition, h′ ∈ I+(gN+1) = I+(gN) (by
the ascending chain condition for ideals) which implies that h′gN ∈ I. Now since i ∈ I
and h′gN ∈ I, we obtain that h = i + h′gN ∈ I and we have our second inclusion. This
completes the proof of our claim.

By assumption, I is irreducible, so I = I + (gN) or I = I + (f). Since f /∈ I, we must
have that I = I + (gN) so gN ∈ I. It follows that I is primary. �

Definition 3.26 ((Minimal) Primary Decomposition). Let I ⊂ R be an ideal. Then a
primary decomposition of I is given by

I =
r⋂
i=1

Qi

where Qi is primary for each i. We call the decomposition minimal (or irredundant) if

(1)
√
Qi 6=

√
Qj for all i 6= j and

(2) Qi 6⊃
⋂
j 6=iQj.

We say that each Qi is a primary component of I.

Example 3.27. Consider the ideal I = (x2 − 1, x + y, z) ⊆ k[x, y, z]. Then a primary
decomposition of I is given by

I = (z, x− 1, y + 1, z)︸ ︷︷ ︸
Q1

∩ (x+ 1, y − 1, z)︸ ︷︷ ︸
Q2

.

Now
√
Q1 = Q1 and

√
Q2 = Q2. It is easy to see that Q1 6⊂ Q2 and Q1 6⊃ Q2 so√

Q1 6=
√
Q2. Since the given decomposition satisfies both (1) and (2) in Definition

3.26, we can conclude that (x − 1, y + 1, z) ∩ (x + 1, y − 1, z) is an irredundant primary
decomposition of I.
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Theorem 3.28 (Existence of Primary Decomposition). Every proper ideal I ⊂ R can be
written as a finite intersection of primary ideals.

Proof. Let I be a proper ideal in R. By Lemma 3.24, we can write I as the finite
intersection of irreducible ideals. So let

I = Q1 ∩ · · · ∩Qs

where each Qi is irreducible. From Lemma 3.25 we know that irreducible ideals are
primary, i.e., Qi is primary for each i. Hence, I can be written as the finite intersection
of primary ideals. �

Lemma 3.29. Let I be a proper ideal in R and let

I = Q1 ∩ · · · ∩Qr

be a primary decomposition of I. For any f ∈ R√
I : (f) =

√
(Q1 : (f)) ∩ · · · ∩

√
(Qr : (f)).

Proof. Let f ∈ R. We will first show that if I = Q1 ∩ · · · ∩ Qr is a primary
decomposition of I then

(1.1) (Q1 ∩ · · · ∩Qr) : (f) = (Q1 : (f)) ∩ · · · ∩ (Qr : (f)).

Suppose that g ∈ (Q1 ∩ · · · ∩ Qr) : (f). Then gf ∈ Q1 ∩ · · · ∩ Qr. So gf ∈ Qi and
g ∈ (Qi : (f)) for all i. It follows that g ∈ (Q1 : (f))∩· · ·∩(Qr : (f)) and we have the first
inclusion. Now suppose that h ∈ (Q1 : (f))∩· · ·∩ (Qr : (f)). Then h ∈ (Qi : (f)) for all i.
It follows that hf ∈ Qi for all i so hf ∈ Q1 ∩ · · · ∩Qr and hence h ∈ (Q1 ∩ · · · ∩Qr) : (f).

Now we want to show that

(1.2)
√

(Q1 : (f)) ∩ · · · ∩ (Qr : (f)) =
√

(Q1 : (f)) ∩ · · · ∩
√

(Qr : (f))

Suppose that g ∈
√

(Q1 : (f)) ∩ · · · ∩ (Qr : (f)). Then gm ∈ (Q1 : (f))∩· · ·∩(Qr : (f)) for

some integer m. So gm ∈ (Qi : (f)) for each i and g ∈
√

(Qi : (f)) by definition. It follows

that g ∈
√

(Q1 : (f)) ∩ · · · ∩
√

(Qr : (f)). Now let h ∈
√

(Q1 : (f)) ∩ · · · ∩
√

(Qr : (f)).

Then h ∈
√

(Qi : (f)) for each i and moreover hmi ∈ (Qi : (f)) for some integer mi.
We have that (hm1 · · ·hmr) = hm1+···+mr ∈ (Q1 : (f)) ∩ · · · ∩ (Qr : (f)). By definition

h ∈
√

(Q1 : (f)) ∩ · · · ∩ (Qr : (f)) and we have the second inclusion.

Now combining 1.1 and 1.2 with the fact that I = Q1 ∩ · · · ∩Qr, we have√
I : (f) =

√
(Q1 ∩ · · · ∩Qr) : (f)

=
√

(Q1 : (f)) ∩ · · · ∩ (Qr : (f))

=
√

(Q1 : (f)) ∩ · · · ∩
√

(Qr : (f)).

�

Theorem 3.30 (First Uniqueness Theorem for Primary Decomposition). Every proper
ideal I ⊂ R has a minimal primary decomposition. If

I = Q1 ∩ · · ·Qr
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is a minimal primary decomposition of I where each Qi is Pi-primary, then

{P1, . . . , Pr} = {
√
I : (f) | f ∈ R,

√
I : (f) is prime},

and hence the set of associated primes of I is independent of the decomposition of I.

Proof. Let I be a proper ideal in R. By Theorem 3.28, we know that we can write I
as the intersection of finitely many primary ideals. If a primary ideal in the decomposition
contains the intersection of the remaining primary ideals, then we can remove this ideal
without changing the intersection. This guarantees (2) in Definition 3.26. By Lemma
3.20, we know that if Qi1 , . . . , Qit are P -primary ideals then Qi1 ∩ · · · ∩Qit is P -primary.
So if two or more primary ideals in the decomposition of I are P -primary for some P , we
can replace these ideals with their intersection which guarantees (1) in Definition 3.26.
Hence, I has a minimal primary decomposition.

We will show that {P1, . . . , Pr} = {
√
I : (f) | f ∈ R,

√
I : (f) is prime} by double

inclusion. Suppose that P ∈ {P1, . . . , Pr}. Then P = Pi =
√
Qi for some i. Since the

decomposition of I is minimal, there exists f ∈ Q1∩ · · · ∩ Q̂i∩ · · · ∩Qr (where Q̂i denotes
the absence of Qi) such that f /∈ Qi. Then by Lemma 3.29 we have

(1.3)
√
I : (f) =

√
Q1 : (f) ∩ · · · ∩

√
Qi : (f) ∩ · · · ∩

√
Qr : (f).

Since f ∈ Qj for all j 6= i, we have by Lemma 3.21(1) that
√
Qj : (f) = R for all j 6= i.

So 1.3 becomes

(1.4)
√
I : (f) = R ∩ · · · ∩

√
Qi : (f) ∩ · · · ∩R =

√
Qi : (f).

Now by Lemma 3.21(2) we have that since f /∈ Qi,
√
Qi : (f) = Pi. So from 1.4, we

obtain

(1.5)
√
I : (f) = Pi.

It follows that Pi ∈ {
√
I : (f) | f ∈ R,

√
I : (f) is prime} and we have the first inclusion.

Now suppose that P =
√
I : (f) ∈ {

√
I : (f) | f ∈ R,

√
I : (f) is prime} for some

f ∈ R. We know that f is not in I since if it were then
√
I : (f) = R by Lemma 3.21(1).

So there exists at least one Qi appearing in the minimal decomposition of I such that
f /∈ Qi. Relabel the primary components of I in the following way:

• f ∈ Q1, . . . , Qt and
• f /∈ Qt+1, . . . , Qr.

By Lemma 3.29 we can write

(1.6) P =
√
I : (f) =

√
Q1 : (f) ∩ · · · ∩

√
Qt : (f) ∩

√
Qt+1 : (f) ∩ · · · ∩

√
Qr : (f).

Since f ∈ Q1, . . . , Qt, we know by Lemma 3.21(1) that the first t components of 1.6 are
equal to R. So we have

(1.7) P =
√
Qt+1 : (f) ∩ · · · ∩

√
Qr : (f)
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and since f /∈ Qt+1, . . . , Qr, we know by Lemma 3.21(2) that
√
Qi : (f) = Pi for i =

t+ 1, . . . , r. So from 1.7 we obtain

P = Pt+1 ∩ · · · ∩ Pr.

Since each Pi is prime and P is prime, we can apply Lemma 3.22 to conclude that P = Pi
for some i = t + 1, . . . , r. It follows that P ∈ {P1, . . . , Pr} and we have the second
inclusion. �

Remark 3.31. It should be noted that the set of associated primes of an ideal I as
defined in Definition 3.11 is exactly the set {P1, . . . , Pr} defined in Theorem 3.30; that is,
if I ⊂ R has a minimal primary decomposition given by

I = Q1 ∩ · · · ∩Qr

where
√
Qi = Pi for each i, then

{(I : (f)) | f ∈ R, (I : (f)) is prime} = {P1, . . . , Pr}.

The proof can be found in Proposition 8.22 of [23].

In the following example, we illustrate how the First Uniqueness Theorem for Primary
Decomposition can enable us to find the set of associated primes of an ideal I ⊂ R.

Example 3.32. Let I = (x1, x2x3, x2x4, x3x4) ⊂ k[x1, x2, x3, x4] be an ideal. A minimal
primary decomposition of I is given by

I = (x1, x2, x3) ∩ (x1, x2, x4) ∩ (x1, x3, x4).

By Lemma 3.8 we know that (x1, x2, x3), (x1, x2, x4), and (x1, x3, x4) are prime ideals in

k[x1, x2, x3, x4] and by Lemma 3.18,
√

(x1, x2, x3) = (x1, x2, x3),
√

(x1, x2, x4) = (x1, x2, x4),

and
√

(x1, x3, x4) = (x1, x3, x4). So it follows from the First Uniqueness Theorem for Pri-
mary Decomposition that Ass(R/I) = {(x1, x2, x3), (x1, x2, x4), (x1, x3, x4)}.

2. Monomial Ideals

Throughout the rest of this project we will be concerned with properties of monomial
ideals. In this section we will define various types of monomial ideals and characterize
some of their properties.

Definition 3.33 ((Square-free) Monomial). A polynomial of the form

f = xα1
1 · · ·xαn

n

with each αi ≥ 0 is called a monomial in R. A monomial is square-free if αi = 0 or 1 for
all i = 1, . . . , n.

Definition 3.34 ((Square-free) Monomial Ideal). A monomial ideal I ⊂ R is an ideal
generated by a collection of monomials in R, i.e.,

I = (xα1
1 · · ·xαn

n | x
α1
1 · · ·xαn

n a monomial in R).



Chapter 3. Commutative Algebra: Primary Decomposition and Monomial Ideals 27

If I is generated by square-free monomials, then we say that I is a square-free monomial
ideal.

Example 3.35. Consider the ideals I = (x) and J = (x, y2) in k[x, y]. Since we can write

x = x1y0 and y2 = x0y2,

both I and J are monomial ideals. Naturally, I is square-free.

Every square-free monomial ideal I has a dual square-free monomial ideal I∨ called
the Alexander dual of I as defined in [14].

Definition 3.36 (Alexander Dual). If I = (x1,1x1,2 · · ·x1,t1 , . . . , xs,1xs,2 · · ·xs,ts) ⊂ k[x1, . . . , xn]
is a square-free monomial ideal, then the Alexander dual of I, denoted I∨, is the square-
free monomial ideal

I∨ = (x1,1, . . . , x1,t1) ∩ · · · ∩ (xs,1, . . . , xs,ts).

Example 3.37. Let J = (x1x2x3, x1x2x4, x1x3x4) ⊂ k[x1, x2, x3, x4]. Then by Definition
3.36, the Alexander dual of J is given by

J∨ = (x1, x2, x3) ∩ (x1, x2, x4) ∩ (x1, x3, x4).

It is difficult in general to specify what the generators of I∨ will be directly from the
generators of I. However, in Chapter 5 we will see that the ideal J given in Example
3.37 is of a special type and we will show which monomials generate J∨ in this case. The
result will show that the Alexander dual J∨ in the above example is equal to the ideal
I = (x1, x2x3, x2x4, x3x4) from Example 3.32.

2.1. Simple Graphs and Monomial Ideals. There exists a one-to-one correspon-
dence between finite simple graphs in graph theory and monomial ideals in commutative
algebra. This correspondence is developed by relabeling the vertices of a simple graph G
with variables in the polynomial ring over a field k, R = k[x1, . . . , xn]. We are interested
in studying the ideals generated by the edges of G and their associated primes. The edge
ideal was first introduced in [25].

Definition 3.38 (Edge Ideal). Let G be a finite simple graph on the vertex set VG =
{x1, . . . , xn} with the edge set EG. Let R = k[x1, . . . , xn] be the polynomial ring over a
field k. Then the edge ideal of G, I(G) ⊂ R, is generated by the set of monomials xixj
such that xixj ∈ EG, i.e.,

I(G) = (xixj | xixj ∈ EG).

Example 3.39. Let G be the connected graph in Example 2.5. By relabeling the vertices
v1, v2, v3 and v4 with the variables x1, x2, x3 and x4 respectively, we can define the edge
ideal of G in the polynomial ring k[x1, x2, x3, x4] over an arbitrary field k. The relabeled
graph G is shown below.
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x4

G

x1

x2 x3

Using the edge set of G given by EG = {x1x2, x1x3, x2x3, x3x4}, we obtain the edge
ideal

I(G) = (x1x2, x1x3, x2x3, x3x4).

In Definition 2.3 we defined a path of a graph G. By recognizing that an edge is a
path of length one, we can extend the idea of an edge ideal to a path ideal. This concept
was first introduced by Conca and De Negri in [8].

Definition 3.40 (Path Ideal). Let G = (VG, EG) be a finite simple graph. Then a path
ideal of G is generated by the set of monomials xi1 · · ·xit+1 such that xi1 , . . . , xit+1 is a
path of G of length t. We denote the path ideal generated by paths of length t by It(G).

We saw in Example 2.20 that the orientation of a graph G affects the number of
paths of length t that appear in G. Naturally, the orientation of a graph also affects the
generators of a path ideal as we will demonstrate in the following example.

Example 3.41. Suppose that Γ1 and Γ2 are the unrooted and rooted trees respectively
from Example 2.20. Below we have relabeled the graphs with variables in k[x1, x2, x3, x4, x5, x6].

x3

Γ1 Γ2

x1

x2

x4

x6

x5

x3

x4

x6

x5

x2

x1

Now suppose that we want to find I3 corresponding to Γ1 and Γ2 respectively. We
have

I3(Γ1) = (x1x2x4x6, x3x1x2x4, x3x1x2x5, x5x2x4x6)
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and

I3(Γ2) = (x1x2x4x6).

It is easy to see that I3(Γ1) 6= I3(Γ2). We have the containment I3(Γ1) ⊇ I3(Γ2). However
since m = x3x1x2x4 ∈ I3(Γ1) and x1x2x4x6 does not divide m, the containment is proper;
that is, I3(Γ1) 6⊆ I3(Γ2).

In Definition 3.36 we defined the Alexander dual of an arbitrary square-free monomial
ideal I. If It is a path ideal corresponding to a graph G, then the Alexander dual of It is
given by

It(G)∨ =
⋂

(xi1 , . . . , xit+1)

where the intersection is over all paths xi1 · · ·xit+1 of G of length t.

Example 3.42. We saw in Example 3.41 that if Γ1 is the unrooted tree shown below,
then the 3-path ideal corresponding to Γ1 is given by

I3(Γ1) = (x1x2x4x6, x3x1x2x4, x3x1x2x5, x5x2x4x6).

Γ1

x1

x2

x4

x6

x5

x3

So by definition, the Alexander dual of I3(Γ1) is

I3(Γ1)∨ = (x1, x2, x4, x6) ∩ (x3, x1, x2, x4) ∩ (x3, x1, x2, x5) ∩ (x5, x2, x4, x6).

We conclude this chapter with an example that shows us how we can determine the
associated primes of a graph using the edge ideal.

Example 3.43. In Example 3.39, we saw that the edge ideal of the graph G shown below
is given by

I(G) = (x1x2, x1x3, x2x3, x3x4).

We claim that the set of associated primes of I(G) corresponds to the set of all minimal
vertex covers of G. We have that

Ass(R/I(G)) = {(x1, x3), (x2, x3), (x1, x2, x4)}.
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x4

G

x1

x2 x3

Let W1 = {x1, x3}, W2 = {x2, x3} and W3 = {x1, x2, x4}. We first need to check that each
Wi is a vertex cover of G. Recall that if G = (VG, EG), then W ⊆ VG is a vertex cover
of G if W intersects every edge of G nontrivially (Definition 2.11). To simplify notation,
let e1 = {x1, x2}, e2 = {x1, x3}, e3 = {x2, x3}, and e4 = {x3, x4} be the sets of vertices
corresponding to the edges of G. Then

W1 ∩ e1 = {x1}, W1 ∩ e2 = {x1, x3}, W1 ∩ e3 = {x3}, W1 ∩ e4 = {x3},
W2 ∩ e1 = {x2}, W2 ∩ e2 = {x3}, W2 ∩ e3 = {x2, x3}, W2 ∩ e4 = {x3},
W3 ∩ e1 = {x1, x2}, W3 ∩ e2 = {x1}, W3 ∩ e3 = {x2}, W3 ∩ e4 = {x4}.

Since Wi ∩ ej 6= ∅ for any i, j, we have that W1,W2, and W3 are vertex covers of G.
Next we need to check that these vertex covers are minimal. There are collectively seven
distinct proper subsets of W1, W2, and W3, namely {xk} where k = 1, 2, 3, 4, {x1, x2},
{x1, x4}, and {x2, x4}. We see that

{x1} ∩ e3 = ∅, {x2} ∩ e2 = ∅, {x3} ∩ e1 = ∅, {x4} ∩ e1 = ∅,
{x1, x2} ∩ e4 = ∅, {x1, x4} ∩ e3 = ∅, and {x2, x4} ∩ e2 = ∅.

It follows that each Wi is a minimal vertex cover of G. Finally, we need to check that no
other W ⊆ VG is a minimal vertex cover for G. There are six remaining possibities. They
are ∅, {x3, x4}, {x1, x2, x3}, {x1, x3, x4}, {x2, x3, x4}, and {x1, x2, x3, x4}. Since ∅ intersects
every edge of G trivially, this cannot be a vertex cover of G. We have that

{x3, x4} ∩ e1 = ∅
so the above set does not satisfy the definition of a vertex cover. Now although the sets
{x1, x2, x3}, {x1, x3, x4}, {x2, x3, x4}, and {x1, x2, x3, x4} are vertex covers of G, they are
not minimal since

W1,W2 ⊂ {x1, x2, x3}, W1 ⊂ {x1, x3, x4}, W2 ⊂ {x2, x3, x4}, and
W1,W2,W3 ⊂ {x1, x2, x3, x4}.

So Ass(R/I(G)) is the set of minimal vertex covers of G.



CHAPTER 4

The Cover Ideal and the Stabilization of Ass(R/Js)

We begin this chapter by defining a Noetherian ring [11], and the index of stability
for the associated primes of ideals in a Noetherian ring. Many of the results discussed in
this chapter are summarized in [22].

Definition 4.1 (Noetherian Ring). A commutative ring R with identity is Noetherian if
every ideal I ⊂ R is finitely generated.

Theorem 4.2 (Hilbert Basis Theorem). Every ideal I ⊂ k[x1, . . . , xn] is finitely generated.

The proof of Theorem 4.2 can be found in [9]. For our purposes, we need only to note
that the polynomial ring R = k[x1, . . . , xn] is Noetherian by the Hilbert Basis Theorem.

Remark 4.3. It is important to note that if R is a commutative ring that satisfies the
ascending chain condition for ideals; that is, if every ascending chain of ideals in R,

I1 ⊂ I2 ⊂ I3 ⊂ · · · ,

eventually stabilizes, then R is Noetherian. This is equivalent to Definition 4.1.

Before giving the definition of the index of stability, we need to define the sth power
of an ideal I:

Definition 4.4 (sth power of I). Let R be a commutative ring and I ⊂ R be an ideal.
We define the sth power of I by

I = (i1 · · · is | ij ∈ I).

Example 4.5. Let I = (x2, y, xz3) ⊂ k[x, y, z] be an ideal. Then the 2nd and 3rd powers
of I are given by

I2 = (x4, x2y, x3z3, y2, xyz3, x2z6)

and

I3 = (x6, x4y, x5z3, x2y2, x3yz3, x4z6, y3, xy2z3, x2yz6, x3z9),

respectively.

We are now ready to define the index of stability. In [6], Brodmann proved the
following:

Theorem 4.6 (Brodmann, 1979). Let I ⊂ R be an ideal where R is a commutative
Noetherian ring. Then there exists N ∈ N such that

31
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∞⋃
s=1

Ass(R/Is) =
N⋃
s=1

Ass(R/Is).

We call the smallest such N the index of stability of Ass(R/Is).

For an arbitrary ideal I ⊂ R, the index of stability N is difficult to compute. In [20],
Hoa determined an upper bound on N for Ass(R/Is) when I ⊂ R is a monomial ideal.

Theorem 4.7 (Hoa, 2006). If I ⊂ R = k[x1, . . . , xn] is a monomial ideal, then the index
of stability N is bounded above by

max{d(nr + r + d)(
√
n)n+1(

√
2d)(n+1)(r−1), r(r + n)4rn+2d2(2d2)r

2−r+1}

where r is equal to the number of generators of I and d is the maximal degree of a
generator.

By definition, if G is a finite simple graph, then the corresponding edge ideal I(G)
is a monomial ideal. We illustrate how large the upper bound on N corresponding to
Ass(R/I(G)s) may be in the following example:

Example 4.8. Let Γ be the tree below on the vertex set VΓ = {x1, x2, x3} with the edge
set EΓ = {x1x2, x1x3}.

x3

x1

x2

Γ

The edge ideal of Γ is given by

I(Γ) = (x1x2, x1x3).

So in this example n = 3, r = 2, and d = 2. Substituting these values into the upper
bound formula given in Theorem 4.7, we obtain

N ≤ max{2(3 · 2 + 2 + 2)(
√

3)3+1(
√

2 · 2)(3+1)(2−1), 2(2 + 3)423+222(2 · 22)22−2+1}
= max{2880, 81920000}
= 81920000.

In [24], Simis, Vasconcelos, and Villarreal proved that a graph G is bipartite if and
only if N = 1 for Ass(R/I(G)s). We proved in Corollary 2.28 that trees are bipartite and
hence we know that if Γ is the tree given in Example 4.8, then we must have that N = 1.
So the upper bound on N in this special case is much larger than the actual value of N .
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Our goal in this chapter is to determine properties of Ass(R/(I(G)∨)s) when G is a
finite simple graph. In Chapter 3, we defined the Alexander dual of a path ideal as the
intersection of the ideals generated by the vertices corresponding to the paths of length t.
When t = 1, the path ideal is exactly the edge ideal defined in [25]. If G is a finite simple
graph with corresponding edge ideal I(G), we know what the generators of the Alexander
dual I(G)∨ correspond to; they are minimal vertex covers (Definition 2.11) of the graph
G.

Lemma 4.9. Let G = (VG, EG) be a finite simple graph with corresponding edge ideal
I(G). Then

I(G)∨ = (xi1 · · ·xir | W = {xi1 , . . . , xir} is a minimal vertex cover of G).

We call I(G)∨ the cover ideal of G.

Proof. Let G be a finite simple graph on the vertex set VG = {x1, . . . , xn} with the
edge set EG = {e1, . . . , et}. By definition we can write

I(G)∨ =
⋂

xjxk∈EG

(xj, xk).

So we need to show that⋂
xjxk∈EG

(xj, xk) = (xi1 · · ·xir | W = {xi1 , . . . , xir} is a minimal vertex cover of G).

We prove this by double inclusion. First suppose thatM is a monomial in
⋂
xjxk∈EG

(xj, xk).

Then M ∈ (xj, xk) for each j, k. This implies that M is divisible by at least one of xj or
xk for each xjxk ∈ EG. Suppose without loss of generality, that M is divisible by exactly
one vertex in each edge, say xi1 , . . . , xit where each xi` ∈ e`. Then we can write

M = xi1 · · · xitm

where m is a monomial in k[x1, . . . , xn]. We claim that the set

W = {xi1 , . . . , xit}

is a minimal vertex cover of G. Since W ∩ e` = {xi`} for each `; that is, W intersects each
edge nontrivially, we know that W is a vertex cover of G. To show that W is minimal,
let W ′ be a proper subset of W . Suppose that xi` ∈ W \W ′ for some 1 ≤ ` ≤ t. Then
W ′ ∩ e` = ∅ so W ′ is not a vertex cover of G. Since W ′ was arbitrary, this is true for any
proper subset of W . Hence W is a minimal vertex cover of G. We have that

M = xi1 . . . xitm

where W = {xi1 , . . . , xit} is a minimal vertex cover of G so

M ∈ (xi1 · · ·xir | W = {xi1 , . . . , xir} is a minimal vertex cover of G)

and we have the first inclusion. Now let M ′ be a monomial such that

M ′ ∈ (xi1 · · ·xir | W = {xi1 , . . . , xir} is a minimal vertex cover of G).
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Then we can write

M ′ = xi1 · · ·xirm′

where m′ is a monomial in k[x1, . . . , xn] and W = {xi1 , . . . , xir} is a minimal vertex cover
of G. By definition, W ∩ e` 6= ∅ for each 1 ≤ ` ≤ t. So for each xjxk ∈ EG, at least one
of xj or xk divides M ′. This implies that M ′ ∈ (xj, xk) for each j, k such that xjxk ∈ EG.
It follows that

M ′ ∈
⋂

xjxk∈EG

(xj, xk)

and we have the second inclusion. This completes the proof. �

We illustrate the result of Lemma 4.9 in the following example:

Example 4.10. Let G be the graph shown below. The edge ideal of G is given by

I(G) = (x1x2, x1x3, x1x4, x2x3, x3x4, x4x5).

x2

G

x1

x5

x4

x3

Then by Definition 3.36 the Alexander dual of I(G) is

I(G)∨ = (x1, x2) ∩ (x1, x3) ∩ (x1, x4) ∩ (x2, x3) ∩ (x3, x4) ∩ (x4, x5).

After computing the intersection, we obtain

I(G)∨ = (x1x3x5, x1x2x4, x1x3x4, x2x3x4).

In Example 2.12, we saw that {x1, x3, x5} is a minimal vertex cover of G so the first gen-
erator of I(G)∨ corresponds to a minimal vertex cover as desired. Let W1 = {x1, x2, x4},
W2 = {x1, x3, x4}, and W3 = {x2, x3, x4}. It is easy to check that every edge in our graph
intersects each Wi nontrivially and hence W1,W2, and W3 are vertex covers of G. Now
we claim that no proper subset of each Wi is a vertex cover of G. We first check that no
single vertex {xj} forms a vertex cover for G. We have {xj} ∩ {x4, x5} = ∅ for j = 1, 2, 3
and {xj}∩{x1, x2} = ∅ for j = 4, 5 where x4x5, x1x2 ∈ EG. Finally, we will show that any
{xj, xk} ⊂ Wi for some i is not a vertex cover of G. There are six distinct proper subsets
of W1,W2 and W3, namely W ′

1 = {x1, x2}, W ′
2 = {x1, x3}, W ′

3 = {x2, x3}, W ′
4 = {x1, x4},

W ′
5 = {x2, x4}, and W ′

6 = {x3, x4}. The intersection of the subsets W ′
1,W

′
2, and W ′

3 with
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{x4, x5}, where x4x5 is an edge of G, is empty and hence W ′
i for i = 1, 2, 3 are not vertex

covers of G. We also have that W ′
4 ∩ {x2, x3} = W ′

5 ∩ {x1, x3} = W ′
6 ∩ {x1, x2} = ∅ where

x2x3, x1x3, x1x2 ∈ EG. So W ′
i is not a vertex cover of G for any i = 1, . . . , 6. Since we

have checked that no proper subset of W1,W2, and W3 are vertex covers of G, we can
conclude that the generators of I(G)∨ correspond to minimal vertex covers of G.

To simplify notation, we will let J = I(G)∨ when the graph G to which the ideal is
associated is clear. Recall from Chapter 3, we proved the First Uniqueness Theorem for
Primary Decomposition (Theorem 3.30). We note that the Alexander dual of an ideal
I ⊂ R is defined in terms of its primary decomposition. Moreover, the ideals appearing
in the intersection I∨ are prime by Lemma 3.8. It follows from Theorem 3.30 that the
ideals appearing in the intersection defining I∨ are the associated primes of I∨. So given
a graph G with cover ideal J , we know which ideals make up Ass(R/J).

Example 4.11. Let Γ be the tree in Example 4.8 on the vertex set VΓ = {x1, x2, x3} with
the edge set EΓ = {x1x2, x1x3}. The minimal vertex covers of Γ are given by W1 = {x1}
and W2 = {x2, x3}. So if J is the ideal generated by the minimal vertex covers of Γ (the
cover ideal), then J = (x1, x2x3). By Lemma 4.9, J is the Alexander dual of I(Γ) so we
can write

J = (x1, x2) ∩ (x1, x3).

We can see that this is a primary decomposition of J and since (x1, x2) and (x1, x3) are
prime ideals, Ass(R/J) = {(x1, x2), (x1, x3)}.

Given a finite simple graph G, we know which prime ideals make up Ass(R/J). How-
ever, in order to better understand the behaviour of Ass(R/Js) for s ≥ 2, we focus on
special families of graphs. In particular, we will show that if G is a tree, then the index
of stability N is equal to 1. To do this, we first need the following definition:

Definition 4.12 (Perfect Graph). A graph G is perfect if for every induced subgraph H
of G, ω(H) = χ(H).

Recall that for a graph G, ω(G) denotes the clique number (Definition 2.16) and χ(G)
the chromatic number (Definition 2.30) of the graph.

Lemma 4.13. Let G = (VG, EG) be a finite simple graph. If G is bipartite, then G is a
perfect graph.

Proof. Let G = (VG, EG) be a bipartite graph and let H be an induced subgraph of
G on the vertex set VH ⊂ VG with the edge set EH . Then H is either a set of isolated
vertices or a bipartite graph. If H is a set of isolated vertices, then H is 1-colourable since
EH = ∅ so we can colour every vertex in VH with the same colour. Trivially, χ(H) = 1
and since a vertex is a clique of size one and H has no edges ω(H) = 1. So in this case
χ(H) = 1 = ω(H). Now if H is bipartite, then we know by Theorem 2.33 that χ(H) = 2
so we want to show that ω(H) = 2. Suppose that H contains an induced clique Kn for
some n ≥ 3. Then we have two cases: n is odd and n is even. If n is odd, then H would
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contain an odd cycle as an induced subgraph. This would contradict the assumption that
H is bipartite (Theorem 2.26). So suppose that n is even. Let VKn = {xi1 , . . . , xi2k} ⊂ VH
denote the vertex set of the induced clique Kn. By Definition 2.15, we know that every
pair of vertices xij , xi` ∈ VKn is adjacent. Without loss of generality, consider the vertices
xi1 , xi2 , xi3 ∈ VKn . We have that xi1xi2 , xi2xi3 ∈ EKn , where EKn denotes the edge set of
the induced clique Kn. Moreover xi3xi1 ∈ EKn , but then

xi1xi2xi3xi1

is a cycle of length 3 in Kn. This would imply that H contains an odd induced cycle
contradicting the assumption that H is bipartite. Hence, the largest induced clique of H
is of size 2; that is, ω(H) = 2. Since for every induced subgraph H of G we have that
χ(H) = ω(H), we can conclude that G is a perfect graph. �

In [13], Francisco, Hà, and Van Tuyl prove the following theorem.

Theorem 4.14. Let G be a simple graph and let J be the cover ideal of G. Then the
following are equivalent:

(1) G is a perfect graph.
(2) For all s ≥ 1, P = (xi1 , . . . , xir) ∈ Ass(R/Js) if and only if the induced graph on
{xi1 , . . . , xir} is a clique of size 1 < r ≤ s+ 1 in G.

In Lemma 4.13 we showed that any bipartite graph is a perfect graph so using this
result and Theorem 4.14, we are able to prove the following:

Theorem 4.15. Let G be a tree with cover ideal J . Then

Ass(R/J) = Ass(R/Js)

for all integers s ≥ 1.

Proof. Let G be a tree with cover ideal J . We will prove that Ass(R/J) = Ass(R/Js)
for all s ≥ 1 by double inclusion. Let P ∈ Ass(R/J). By Lemma 4.9, we know that
P = (xi, xj) where xixj ∈ EG. Now by Corollary 2.28, we know that trees are bipartite
so it follows from Lemma 4.13 that G is a perfect graph and we can apply Theorem
4.14. Since P = (xi, xj) ∈ Ass(R/J1), we have that {xi, xj} is a clique of size 2. Now
since s ≥ 1, we obtain that s + 1 ≥ 2. Applying Theorem 4.14 again, we can conclude
that P ∈ Ass(R/Js) for all s ≥ 1 and we have the first inclusion. Suppose now that
P = (xi1 , . . . , xir) ∈ Ass(R/Js) for all s ≥ 1. By Theorem 4.14, {xi1 , . . . , xir} is a clique
of size 1 < r ≤ s + 1. Since G is a tree, we know by Lemma 2.21 that the size of the
largest clique of G is 2, i.e., ω(G) = 2. So we must have that r = 2. Now P = (xi1 , xi2)
where {xi1 , xi2} is a clique of size 2 ≤ s+ 1, so from Theorem 4.14 we can conclude that
P ∈ Ass(R/J1). This completes the proof. �



CHAPTER 5

Stars and Associated Primes of Js
2

We are interested in studying the associated primes of the Alexander dual of the path
ideal It(G) for paths that are longer than a single edge. In this chapter we study the
associated primes of the dual of I2(G) in the case that our graph is a star.

Recall the definition of the Alexander dual of a path ideal:

Definition 5.1 (Alexander Dual of It(G)). Let G = (VG, EG) be a finite simple graph.
Then the Alexander dual of It(G) is given by

It(G)∨ =
⋂

{xi1 ,...,xit+1
}

(xi1 , . . . , xit+1)

where xi1 , . . . , xit+1 is a path of length t.

Throughout the rest of this chapter, let Jt(G) = It(G)∨. In Chapter 2, we defined
a complete bipartite graph, Km,n (Definition 2.24). Here we consider K1,n as defined in
[10].

Definition 5.2 (Star). Let Km,n be a complete bipartite graph such that m = 1. We call
K1,n a star and we say that the vertex in the singleton partition class is the star’s centre.

We are interested in the associated primes of (J2(K1,n))s as s varies. Note that if we
intend to study the properties of paths of length two, it is necessary that we treat a star
as an unrooted tree since K1,n contains no directed paths of length greater than one. We
are able to define the generators of the Alexander dual J2 when our graph is a star:

Lemma 5.3. Let K1,n be a star on the vertex set {z, x1, . . . , xn} with centre z. Then

J2 = (z) + (x1 · · · x̂i · · ·xn | i = 1, . . . , n)

where x̂i denotes the absence of vertex xi.

Proof. By definition we have

J2 =
⋂

1≤j<k≤n

(xj, z, xk).

So we want to show that⋂
1≤j<k≤n

(xj, z, xk) = (z) + (x1 · · · x̂i · · · xn | i = 1, . . . , n).

37
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We proceed by double inclusion. Suppose that m is a monomial in
⋂

1≤j<k≤n(xj, z, xk).

Then for each 1 ≤ j < k ≤ n, we have m ∈ (xj, z, xk). We have two cases: either z | m
or z - m. If z | m, then m ∈ (z) and hence m ∈ (z) + (x1 · · · x̂i · · ·xn | i = 1, . . . , xn). On
the other hand, if z - m then we claim that x1 · · · x̂i · · ·xn | m for some i; that is, exactly
one xi does not divide m. We will show this by contradiction. Suppose that xj - m and
xk - m for some j < k. We have assumed that z - m so m /∈ (xj, z, xk). This contradicts
the fact that m ∈ (xj, z, xk) for all 1 ≤ j < k ≤ n. So x1 · · · x̂i · · ·xn | m for some i. It
follows that m ∈ (x1 · · · x̂i · · ·xn | i = 1, . . . , n) and we have the first inclusion.

Now suppose that m ∈ (z) + (x1 · · · x̂i · · ·xn | i = 1, . . . , n). Again we have two
possibilities, either z | m or z - m. If z | m, then m ∈ (xj, z, xk) for all 1 ≤ j < k ≤ n. So
m ∈

⋂
1≤j<k≤n(xj, z, xk). Now if z - m then m is a multiple of some x1 · · · x̂i · · ·xn. That

is, we can write
m = x1 · · · x̂i · · ·xnM

where M is a monomial in k[z, x1, . . . , xn]. Now m is divisible by every x` except for when
` = i. So possibly m /∈ (xi, z, xk) or m /∈ (xj, z, xi) for some k > i or j < i. But m is
divisible by every x` where ` 6= i so in particular xk | m and xj | m when k > i and
j < i. So m ∈ (xj, z, xk) for all 1 ≤ j < k ≤ n. Hence, m ∈

⋂
1≤j<k≤n(xj, z, xk) and we

have the second inclusion. Since J2 =
⋂

1≤j<k≤n(xj, z, xk), the result follows by double
inclusion. �

Example 5.4. Below we have K1,2, K1,3, K1,4, and K1,5, respectively. The centre of each
of the stars shown is z. Here we list the corresponding Alexander dual, J2 of each K1,n

as described in Lemma 5.3:

• K1,2 → J2 = (z, x1, x2)
• K1,3 → J2 = (z, x1x2, x1x3, x2x3)
• K1,4 → J2 = (z, x1x2x3, x1x2x4, x1x3x4, x2x3x4)
• K1,5 → J2 = (z, x1x2x3x4, x1x2x3x5, x1x2x4x5, x1x3x4x5, x2x3x4x5).

z

K1,2 K1,3 K1,4 K1,5

x1 x2 x1 x2 x3 x2x1 x3 x4 x1 x2 x3 x4 x5

zzz

Our goal is to prove Theorem 5.8. In order to do this we need the following lemma:

Lemma 5.5. Let K1,n be a star on the vertex set {z, x1, . . . , xn} with centre z and corre-
sponding Alexander dual J2. If Js2 : (m) = (z, x1, . . . , xn) where m = zem′ is a monomial
in k[z, x1, . . . , xn] such that z - m′, then

m | ze(x1 · · ·xn)s−e−1.
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Proof. Let m be a monomial in k[z, x1, . . . , xn] such that Js2 : (m) = (z, x1, . . . , xn),
m = zem′, and z - m′. Since z ∈ (z, x1, . . . , xn), we have that zm ∈ Js2 . So we can write

(0.1) zm = m1 · · ·msM

where each mj is a minimal generator of J2 and M is a monomial in k[z, x1, . . . , xn]. Now
m = zem′ by assumption so substituting this expression into 0.1 we have

ze+1m′ = m1 · · ·msM.

We know that z does not divide M since if it did, we would have

zem′ = m1 · · ·ms(
M

z
),

so zem′ = m would be a multiple of a generator of Js2 ; that is, m ∈ Js2 . This would
contradict the fact that Js2 : (m) 6= (1). Hence, exactly e + 1 of the mj’s are equal to z.
Without loss of generality, suppose that m1 = m2 = · · · = me+1 = z. Then we can write

(0.2) ze+1m′ = ze+1me+2 · · ·msM.

Cancelling ze+1 on both sides of 0.2, we obtain

(0.3) m′ = me+2 · · ·msM.

We claim that each xi appears at most s − e − 1 times on the right-hand side of 0.3.
We will prove this by contradiction. Suppose that xs−ei divides m′ for some i. Since
xi ∈ (z, x1, . . . , xn), we have xim = xiz

em′ ∈ Js2 . So we can write

(0.4) xiz
em′ = `1 · · · `sL

where each `j is a minimal generator of J2 and L is a monomial in k[z, x1, . . . , xn]. Now
we can see that xi does not divide L since if it did then we would have

zem′ = `1 · · · `s(
L

xi
) ∈ Js2

which would contradict the fact that Js2 : (m) 6= (1). Since we have assumed that xs−ei | m′,
we know that xi must appear at least s − e + 1 times on the left-hand side of 0.4. This
implies that xi appears at least s − e + 1 times on the right-hand side of 0.4. We know
that xi - L so xi must appear in at least s− e+ 1 of the `j’s. Without loss of generality,
suppose that xi appears in `j for j = 1, . . . , s− e+ 1. Then grouping these terms together
we have

(0.5) xiz
em′ = (`1 · · · `s−e+1)`s−e+2 · · · `sL.

We know that xi | `j for j = 1, . . . s− e+ 1 so in particular xi | `1. Dividing by xi on both
sides of 0.5, we obtain

(0.6) zem′ = (
`1

xi
`2 · · · `s−e+1)`s−e+2 · · · `sL.

Now z appears e times on the left hand-side of 0.6 so z must appear e times on the right-
hand side. In Lemma 5.3 we showed that the minimal generators of J2 take on either of
the following two forms: z or x1 · · · x̂k · · ·xn, where x̂k denotes the absence of vertex xk.
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Since xi | `j for j = 1, . . . , s − e + 1 and each `j is a minimal generator of J2, we know
that these generators are only in terms of the xi’s; that is, z 6= `j for j = 1, . . . , s− e+ 1.
So only the remaining s − (s − e + 1) = e − 1 `j’s can be equal to z. Since z appears e
times on the left-hand side of 0.6 and can appear at most e− 1 times in the `j’s, we must
have that z | L; that is, L = zK for some monomial K. Then

zem′ = (
`1

xi
`2 · · · `s−e+1)`s−e+2 · · · `szK.

Now zem′ is a multiple of s generators of J2, namely `2, . . . , `s and z so m = zem′ ∈ Js2 .
This contradicts the fact that Js2 : (m) 6= (1) so our assumption that xs−ei | m′ was false.
It follows that each xi appears at most s− e− 1 times on the right-hand side of 0.3 and
hence

m | ze(x1 · · ·xn)s−e−1.

�

Given a star K1,n with corresponding Alexander dual J2, we can find the annihilator
of Js2 that gives us the maximal ideal (z, x1, · · · , xn) in k[z, x1, . . . , xn].

Theorem 5.6. Let K1,n be a star on the vertex set {z, x1, . . . , xn} with centre z and
corresponding Alexander dual J2. Then

(1) Js2 : (xn−2
1 · · ·xn−2

n ) = (z, x1, . . . , xn) for s = n− 1 and
(2) Js2 : (zxn−2

1 xs−2
2 · · ·xs−2

n ) = (z, x1, . . . , xn) for s > n− 1

where (z, x1, . . . , xn) ⊂ k[z, x1, . . . , xn] is a maximal ideal.

Proof.

(1) We first want to show that xn−2
1 · · ·xn−2

n /∈ Js2 when s = n− 1. We note that every
generator of Js2 that is in terms of only the xi’s has degree s(n − 1). When s = n − 1,
such generators have degree (n − 1)2 = n2 − 2n + 1. Now xn−2

1 · · ·xn−2
n has degree

n(n − 2) = n2 − 2n < (n − 1)2. So we cannot have xn−2
1 · · ·xn−2

n ∈ Js2 . (Every other
generator is some multiple of z so it is immediately apparent that these generators cannot
divide xn−2

1 · · · xn−2
n .) Since xn−2

1 · · ·xn−2
n /∈ Js2 when s = n − 1, we can conclude that

Js2 : (xn−2
1 · · ·xn−2

n ) 6= (1).
Next we want to show that (z, x1, . . . , xn) ⊂ Js2 : (xn−2

1 · · ·xn−2
n ) for s = n−1. We pro-

ceed by showing that each generator of (z, x1, . . . , xn) is in Js2 : (xn−2
1 · · ·xn−2

n ). Consider
z(xn−2

1 · · · xn−2
n ) = z(xs−1

1 · · ·xs−1
n ) = z(x1 · · ·xn−1)s−1xs−1

n . Now (x1 · · ·xn−1)s−1 ∈ Js−1
2

and by the properties of ideals (x1 · · ·xn−1)s−1xs−1
n ∈ Js−1

2 . Since z ∈ J2, we have that
z(x1 · · ·xn−1)s−1xs−1

n ∈ Js2 and hence

z ∈ Js2 : (xs−1
1 · · ·xs−1

n ).

Since (xs−1
1 · · ·xs−1

n ) = (xn−2
1 · · ·xn−2

n ), we have z ∈ Js2 : (xn−2
1 · · ·xn−2

n ).
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Next consider xi(x
n−2
1 · · ·xn−2

n ) = xi(x
s−1
1 · · ·xs−1

n ) for some i. We can write

xi(x
s−1
1 · · ·xs−1

n ) =
n∏

j=1,j 6=i

x1 · · · x̂j · · ·xn.

Note that there are exactly n − 1 = s terms in this product and x1 · · · x̂j · · ·xn ∈ J2

for each j, so xi(x
s−1
1 · · · xs−1

n ) ∈ Js2 . It follows that xi ∈ Js2 : (xn−2
1 · · · xn−2

n ) for each
i and hence (z, x1, · · · , xn) ⊂ Js2 : (xn−2

1 · · · xn−2
n ) for s = n − 1. We have shown that

Js2 : (xn−2
1 · · ·xn−2

n ) 6= (1) and (z, x1, . . . , xn) ⊂ Js2 : (xn−2
1 · · ·xn−2

n ) so by the definition of
a maximal ideal, we have that Js2 : (xn−2

1 · · ·xn−2
n ) = (z, x1, . . . , xn).

(2) We will show that Js2 : (zxn−2
1 xs−2

2 · · · xs−2
n ) 6= (1) for s > n − 1 by contradiction.

Suppose that zxn−2
1 xs−2

2 · · · xs−2
n ∈ Js2 . Then we can write

(0.7) zxn−2
1 xs−2

2 · · ·xs−2
n = m1 · · ·msM

where each m` is a minimal generator of J2 and M is a monomial in k[z, x1, . . . , xn].

Now we consider two cases. In the first case, z | m` for some ` which implies that
z = m` by Lemma 5.3. Without loss of generality, suppose that z = m1. Then cancelling
z on both sides of 0.7, we obtain

(0.8) xn−2
1 xs−2

2 · · ·xs−2
n = m2 · · ·msM.

On the left-hand side of 0.8, the total degree of the xi’s is (n−2)+(n−1)(s−2) = ns−s−n.
On the right-hand side of 0.8, each m` = x1 · · · x̂j · · ·xn for 2 ≤ ` ≤ s and some 1 ≤ j ≤ n.
There are s− 1 such m`’s and since each x1 · · · x̂j · · ·xn has degree n− 1, we have

deg(m2 · · ·ms) = (s− 1)(n− 1) = ns− s− n+ 1,

that is, the total degree of the xi’s on the right-hand side of 0.8 is at least ns− s− n+ 1.
Since ns− s− n < ns− s− n+ 1, we cannot have that m2 · · ·ms | xn−2

1 xs−2
2 · · ·xs−2

n . So
our assumption that zxn−2

1 xs−2
2 · · ·xs−2

n ∈ Js2 was false in this case.

In the second case, we have z - m` for any `. Then since z appears on the left-hand
side of 0.7, z must appear on the right-hand side. We have assumed that z - m` for all `
so we must have z |M . Dividing by z on both sides of 0.7, we obtain

xn−2
1 xs−2

2 · · ·xs−2
n = m1 · · ·ms(

M

z
).

Since each m` = x1 · · · x̂j · · ·xn has degree n − 1, we know that m1 · · ·ms has degree
s(n− 1). However, we saw above that xn−2

1 xs−2
2 · · ·xs−2

n has degree ns− s− n < ns− s =
s(n− 1). So we have reached a contradiction in this case as well. We can conclude that
zxn−2

1 xs−2
2 · · ·xs−2

n /∈ Js2 for s > n− 1 and hence Js2 : (zxn−2
1 xs−2

2 · · ·xs−2
n ) 6= (1).

Now we claim that (z, x1, . . . , xn) ⊂ Js2 : (zxn−2
1 xs−2

2 · · ·xs−2
n ) for s > n − 1. We will

prove this using induction on s. We first consider the case where s = n. We have that
z(zxn−2

1 xs−2
2 · · ·xs−2

n ) = z(zxn−2
1 xn−2

2 · · ·xn−2
n ). Since z ∈ J2 and from (1) we know that

(zxn−2
1 xn−2

2 · · ·xn−2
n ) ∈ Jn−1

2 , we have that

z(zxn−2
1 xn−2

2 · · ·xn−2
n ) ∈ Jn2 .
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Now consider xi(zx
n−2
1 xn−2

2 · · ·xn−2
n ) for some i. We have that xi(zx

n−2
1 xn−2

2 · · ·xn−2
n ) =

z(xix
n−2
1 xn−2

2 · · ·xn−2
n ). Again since z ∈ J2 and (xix

n−2
1 xn−2

2 · · ·xn−2
n ) ∈ Jn−1

2 by (1), it
follows that

z(xix
n−2
1 xn−2

2 · · ·xn−2
n ) ∈ Jn2 .

So (z, x1, . . . , xn) ⊂ Js2 : (zxn−2
1 xs−2

2 · · ·xs−2
n ) for s = n.

Now assume that

z(zxn−2
1 xs−2

2 · · ·xs−2
n ) ∈ Js2 and xi(zx

n−2
1 xs−2

2 · · ·xs−2
n ) ∈ Js2

for all 1 ≤ i ≤ n. Consider

z(zxn−2
1 xs−1

2 · · ·xs−1
n ) = z(zxn−2

1 xs−2
2 · · · xs−2

n )(x2 · · ·xn).

By induction we have z(zxn−2
1 xs−2

2 · · ·xs−2
n ) ∈ Js2 and we know by Lemma 5.3 that

(x2 · · ·xn) = x̂1x2 · · ·xn ∈ J2 so z(zxn−2
1 xs−1

2 · · ·xs−1
n ) ∈ Js+1

2 . Similarly, we have

xi(zx
n−2
1 xs−1

2 · · ·xs−1
n ) = xi(zx

n−2
1 xs−2

2 · · ·xs−2
n )(x2 · · ·xn).

By induction xi(zx
n−2
1 xs−2

2 · · · xs−2
n ) ∈ Js2 and since (x2 · · ·xn) ∈ J2, we have that

xi(zx
n−2
1 xs−1

2 · · ·xs−1
n ) ∈ Js+1

2

for any i. Hence, (z, x1 · · · , xn) ⊂ Js2 : (zxn−2
1 xs−2

2 · · ·xs−2
n ) for s > n − 1 and since

Js2 : (zxn−2
1 xs−2

2 · · ·xs−2
n ) 6= (1), we must have that

Js2 : (zxn−2
1 xs−2

2 · · ·xs−2
n ) = (z, x1, . . . , xn).

�

We demonstrate the above result in the following example.

Example 5.7. Let K1,4 be the star on vertex set {z, x1, x2, x3, x4}. By Lemma 5.3, we
know that

J2 = (z, x2x3x4, x1x3x4, x1x2x4, x1x2x3).

The graph of K1,4 is shown below.

K1,4

x2x1 x3 x4

z

Now by Theorem 5.6, we have that

(1) J3
2 : (x2

1x
2
2x

2
3x

2
4) = (z, x1, x2, x3, x4), and

(2) Js2 : (zx2
1x

s−2
2 xs−2

3 xs−2
4 ) = (z, x1, x2, x3, x4) for s > 3.
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For example, if s = 5 then the annihilator of J5
2 is given by (zx2

1x
3
2x

3
3x

3
4), i.e., J5

2 :
(zx2

1x
3
2x

3
3x

3
4) = (z, x1, x2, x3, x4). Note that in the second case, we can choose any xi in

the annihilator to have exponent n−2 and the rest s−2. This implies that not only does
J5

2 : (zx2
1x

3
2x

3
3x

3
4) = (z, x1, x2, x3, x4, x5) but also

J5
2 : (zx3

1x
2
2x

3
3x

3
4) = J5

2 : (zx3
1x

3
2x

2
3x

3
4) = J5

2 : (zx3
1x

3
2x

3
3x

2
4) = (z, x1, x2, x3, x4).

This is true for any s > 3.

In Example 5.7, we noted that we can choose any xi to have exponent n− 2 and the
rest s− 2 in Theorem 5.6(2). This is true in general.

We are now ready prove our main result.

Theorem 5.8. Let K1,n be a star on the vertex set {z, x1, . . . , xn} with centre z and
corresponding Alexander dual J2. Then

(1) (z, x1, . . . , xn) ∈ Ass(R/Js2) for s ≥ n− 1
(2) (z, x1, . . . , xn) /∈ Ass(R/Js2) for s < n− 1

where (z, x1, . . . , xn) ⊂ k[z, x1, . . . , xn] is a maximal ideal.

Proof. (1) This follows immediately from Theorem 5.6.

(2) We will use a proof by contradiction. Suppose that (z, x1, . . . , xn) ∈ Ass(R/Js2) for
some s < n − 1. Then there is a monomial m ∈ k[z, x1, . . . , xn] such that Js2 : (m) =
(z, x1, . . . , xn). Factor out the z terms of m and write m = zem′ such that z - m′. Then
by Lemma 5.5, we have that

(0.9) m | ze(x1 · · · xn)s−e−1.

Multiplying 0.9 on both sides by (x1 · · ·xn), we obtain

(0.10) m(x1 · · ·xn) | ze(x1 · · ·xn)s−e.

Now since x1 ∈ (z, x1, . . . , xn), we know that x1m ∈ Js2 and since (x̂1x2 · · ·xn) is a
generator of J2, we have that

x1m(x̂1x2 · · ·xn) = m(x1 · · ·xn) ∈ Js+1
2 .

By 0.10, we know that ze(x1 · · ·xn)s−e is a multiple of m(x1 · · ·xn) ∈ Js+1
2 so we must

have ze(x1 · · ·xn) ∈ Js+1
2 . Hence, some generator of Js+1

2 divides ze(x1 · · ·xn)s−e. Every
generator of Js+1

2 has one of the following two forms:

(i) zs+1

(ii) zf (x̂1x2 · · ·xn)f1 · · · (x1 · · ·xn−1x̂n)fn , where f ≥ 0 and fi 6= 0 for some i.

We will now show that in both cases, these generators do not divide ze(x1 · · ·xn)s−e.

(i) Suppose that zs+1 | ze(x1 · · ·xn)s−e. Then we have s + 1 ≤ e. Which implies that
s− e ≤ −1. This contradicts the fact that s− e ≥ 0. So zs+1 - ze(x1 · · · xn)s−e.

(ii) Now suppose that some generator of the form zf (x̂1x2 · · ·xn)f1 · · · (x1 · · ·xn−1x̂n)fn

divides ze(x1 · · · xn)s−e. Then we must have that 0 ≤ f ≤ e and the degree of the xi’s
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in zf (x̂1x2 · · ·xn)f1 · · · (x1 · · ·xn−1x̂n)fn is less than or equal to the degree of the xi’s in
ze(x1 · · ·xn)s−e. That is,

(0.11) (n− 1)(f1 + · · ·+ fn) ≤ n(s− e).

Since zf (x̂1x2 · · ·xn)f1 · · · (x1 · · ·xn−1x̂n)fn is a generator of Js+1
2 , we must have f + f1 +

· · ·+ fn = s+ 1. Rearranging, we obtain

(0.12) f1 + · · ·+ fn = s+ 1− f.

Substituting 0.12 into 0.11, we have

(n− 1)(s+ 1− f) ≤ n(s− e).

After expanding and cancelling terms, we get

f − nf + n− s− 1 ≤ −ne.

Now since 0 ≤ f ≤ e, we have −ne ≤ −nf . From this inequality and the fact that f ≥ 0,
we see that

−ne+ n− s− 1 ≤ f − nf + n− s− 1 ≤ −ne.
So −ne+ n− s− 1 ≤ −ne. Adding −ne to both sides of the inequality, we obtain

n− 1− s ≤ 0.

By assumption, s < n− 1 so

0 < n− 1− s ≤ 0.

This is impossible so our assumption that (z, x1, . . . , xn) ∈ Ass(R/Js2) for some s < n− 1
was false. This completes the proof. �

Theorem 5.8 tells us that not only does the maximal ideal (z, x1, . . . , xn) appear in
the set of associated primes of Js2 for all s ≥ n− 1 but also that this ideal appears for the
first time when s = n− 1; that is, (z, x1, . . . , xn) is not an associated prime for any power
of J2

s where s < n− 1.

In Theorem 4.6 we defined the index of stability of Ass(R/Is) where I ⊂ R is an ideal.
In the following example, we illustrate how Theorem 5.8 provides us with a lower bound
on the index of stability for Ass(R/J2(K1,n)s).

Example 5.9. Suppose that K1,101 is a star on the vertex set {z, x1, . . . , x101}. By
Theorem 5.8 we know that

(z, x1, . . . , x101) ∈ Ass(R/Js2), for all s ≥ 100

and

(z, x1, . . . , x101) /∈ Ass(R/Js2), for all s < 100.

Since the maximal ideal (z, x1, . . . , x101) appears for the first time in Ass(R/J100
2 ), we can

conclude that N ≥ 100.

We end this chapter with two consequences of Theorem 5.8. In Example 5.9, we
illustrated the following corollary of Theorem 5.8:
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Corollary 5.10. Let K1,n be a star on the vertex set {z, x1, . . . , xn} with centre z and
corresponding Alexander dual J2. Then

N ≥ n− 1

where N denotes the index of stability of Ass(R/Js2).

We will now consider how Theorem 5.8 can answer a question about hypergraphs. In
[13], Francisco, Hà, and Van Tuyl raised the following question:

Question 5.11. For each integer n ≥ 0, does there exist a hypergraph Hn such that the
stabilization of Ass(R/J(Hn)s) occurs at N ≥ (χ(Hn)− 1) + n, where J(Hn) is the cover
ideal corresponding to Hn?

Theorem 5.8 gives us an answer to this question. In order to see this, we first need to
define a hypergraph. The following definition can be found in [4].

Definition 5.12 ((Simple) Hypergraph). Let X = {x1, . . . , xn} be a finite set. A hyper-
graph H on X is a family of subsets

H = (E1, . . . , Em),

such that

(1) Ei 6= ∅ for i = 1, . . . ,m, and
(2)

⋃m
i=1Ei = X .

We call X the vertex set and E1, . . . , Em the edges of H respectively. If in addition,
|Ei| ≥ 2 and Ei 6⊆ Ej for i 6= j, then we say that H is simple.

In [17], Hà and Van Tuyl extended the concept of the edge ideal first defined in [25]
to hypergraphs.

Definition 5.13 (Edge Ideal of H). Let H be a hypergraph on the vertex set X and let
E = {E1, . . . , Em} denote the collection of edges of H. Then the edge ideal corresponding
to H is given by

I(H) = ({xEi | Ei ∈ E})

where xEi =
∏

xj∈Ei
xj.

We will now define a (minimal) vertex cover of H and the cover ideal corresponding
to H.

Definition 5.14 ((Minimal) Vertex Cover of H). Let H be a hypergraph on the vertex
set X and let E denote the collection of edges of H. A subset W ⊆ X is a vertex cover of
H if W ∩ E 6= ∅ for all E ∈ E . A vertex cover W is minimal if no proper subset of W is
a vertex cover of H.
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Definition 5.15 (Cover Ideal of H). Let H be a hypergraph on the vertex set X and let
E denote the collection of edges of H. Then we define the cover ideal corresponding to H
by

J(H) = (xi1 · · ·xir | W = {xi1 , . . . , xir} is a minimal vertex cover of H).

It can be shown that the Alexander dual of I(H) is equal to the cover ideal corre-
sponding to H; that is, I(H)∨ = J(H). For our purposes, we will only need the result of
Lemma 5.18. In order to describe a solution to Question 5.11, we also need to define a
d-colouring and the chromatic number of a hypergraph. The following definitions can be
found in [13].

Definition 5.16 (d-colouring of H). Let H be a hypergraph on the vertex set X and let E
denote the collection of edges of H. A d-colouring of H is a partition of X = C1∪ · · ·∪Cd
into d disjoint sets such that if E ∈ E , then E 6⊆ Ci for any i. We call C1, . . . , Cd colour
classes of a d-colouring.

Definition 5.17 (Chromatic Number of H). The chromatic number of a hypergraph H
is the minimal d such that H has a d-colouring. We denote the chromatic number of a
hypergraph H by χ(H).

We are now ready to construct a hypergraphHn that will give us a solution to Question
5.11.

Construction of Hn:

Take a star K1,n on the vertex set V = {z, x1, . . . , xn}. Add two vertices to V and
construct a new star K1,n+2 on the vertex set V ′ = {z, x1, . . . , xn, xn+1, xn+2}.

For example, suppose that we take K1,2 on the vertex set {z, x1, x2} shown below on
the left. Now we add the vertices x3 and x4 and construct a new star K1,4 on the vertex
set {z, x1, x2, x3, x4} shown on the right. The dashed lines indicate the new edges that
connect x3 and x4 to z respectively.

K1,2

x1 x1

z z

x4x2 x3x2

K1,4

Now let X = V ′ denote the vertex set of our hypergraph Hn. We define the edges of
Hn by

Ei = {xj, z, xk},
where 1 ≤ j < k ≤ n + 2. The vertices in each Ei correspond to a path of length two in
K1,n+2.

In our example n+ 2 = 4 so the edges of H2 are given by
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E1 = {x1, z, x2}, E2 = {x1, z, x3}, E3 = {x1, z, x4}, E4 = {x2, z, x3}, E5 = {x2, z, x4}, and
E6 = {x3, z, x4}.

Throughout the rest of this chapter, we will refer to the hypergraph Hn constructed
as described above as Hn corresponding to K1,n+2.

We now need the following two lemmas:

Lemma 5.18. Let Hn be the hypergraph corresponding to K1,n+2. Then

J2(K1,n+2) = J(Hn)

where J2(K1,n+2) is the Alexander dual of the path ideal I2(K1,n+2) and J(Hn) is the cover
ideal corresponding to Hn.

Proof. In Lemma 5.3, we showed that

(0.13) J2(K1,n+2) = (z) + (x1 · · · x̂` · · ·xn+2 | ` = 1, . . . , n+ 2)

where x̂` denotes the absence of vertex x`. So it is enough to show that

(z) + (x1 · · · x̂` · · · xn+2 | ` = 1, . . . , n+ 2) = J(H).

We will prove this by double inclusion. To obtain the first inclusion, we will show that
each generator of 0.13 corresponds to a minimal vertex cover of Hn. By the way we
have constructed Hn, we have z ∈ Ei for each edge set Ei of Hn. This implies that
Ei ∩ {z} = {z} 6= ∅ so {z} is a vertex cover of Hn. Since the only proper subset of {z}
is ∅ and ∅ ∩ Ei = ∅ for all i, we can conclude that {z} is a minimal vertex cover of Hn.
It follows that z ∈ J(Hn). Now consider a generator of 0.13 of the form x1 · · · x̂` · · ·xn.
The set W = {x1, . . . , x̂`, . . . , xn} intersects every Ei nontrivially except for possibly
the edges containing x`. These take on two forms: Eq = {xq, z, x`} where q < ` and
Eq′ = {x`, z, xq′} where ` < q′. However, W ∩ Eq = {xq} and W ∩ Eq′ = {xq′} since
the only vertices missing from W are z and x`. In both cases, W intersects the edge
nontrivially and hence W ∩ Ei 6= ∅ for all i. It follows that W is a vertex cover of Hn

so x1 · · · x̂` · · · xn ∈ J(Hn). To show that W is a minimal vertex cover of Hn, suppose
that there is a proper subset W ′ ⊂ W such that W ′ is a vertex cover of Hn. Then there
is x`′ where `′ 6= ` such that x`′ ∈ W \W ′. Consider the edge E = {x`, z, x`′}. Since
z /∈ W and x` /∈ W , we must have that z, x` /∈ W ′. We have also assumed that x`′ /∈ W ′

so E ∩W ′ = ∅. This contradicts the fact that W ′ is a vertex cover of Hn. Hence, W is
a minimal vertex cover of Hn. Since each generator of 0.13 is in J(Hn), we can conclude
that J2(K1,n+2) ⊆ J(Hn). Now let m be a monomial in J(Hn). We can write

(0.14) m = xj1 · · ·xjrM

where M is a monomial in k[z, x1, . . . , xn+2] and W = {xj1 , . . . , xjr} is a minimal vertex
cover of Hn. We have two cases: z | m or z - m. If z | m, then m ∈ (z) and we are done.
If z - m, then z /∈ W since if it were, we would have that xjk = z for some k and z | m.
Now we claim that at most one x` does not divide m. We will prove this by contradiction.
Suppose that x` - m and x`′ - m where ` < `′. Then x` /∈ W , since if it were then x` would
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appear on the right-hand side of 0.14; that is, x` would divide m. Similarly, x`′ /∈ W . Now
consider the edge of Hn, E = {x`, z, x`′}. Since z, x`, x`′ /∈ W , we have that W ∩ E = ∅.
This contradicts the assumption that W is vertex cover of Hn. Hence, at most one x`
does not divide m; that is, x1 · · · x̂` · · ·xn+2 | m for some `. It follows that m ∈ J2(K1,n+2)
and we have the second inclusion. �

Lemma 5.19. Let Hn be the hypergraph corresponding to K1,n+2. Then χ(Hn) = 2.

Proof. LetHn be the hypergraph corresponding toK1,n+2 and let C1 = {x1, . . . , xn+2}
and C2 = {z}. We claim that X = C1 ∪ C2 is a 2-colouring of Hn. It is easy to see that
C1 ∩ C2 = ∅ so C1 and C2 are disjoint. By the way we have constructed Hn, we know
that |Ei| = 3 for each i but |C2| = 1 so Ei 6⊆ C2 for any i. Since each Ei is of the form
Ei = {xj, z, xk} where 1 ≤ j < k ≤ n + 2, we have that z ∈ Ei for every i but z /∈ C1,
since if it were then C1 ∩ C2 6= ∅. It follows from Definition 5.16 that X = C1 ∪ C2 is a
2-colouring of Hn.

Now we want to show that χ(Hn) = 2. We will do this by contradiction. Suppose
that Hn has a 1-colouring. Then the only possibility is X = C1 but Ei ⊆ X for all i.
So Ei ⊆ C1 for all i contradicting the assumption that X = C1 is a 1-colouring of Hn.
Hence, χ(Hn) = 2. �

We are finally ready to prove a corollary of Theorem 5.8 that gives a solution to
Question 5.11.

Corollary 5.20. Let Hn be the hypergraph corresponding to K1,n+2. Then the stabilization
of Ass(R/J(Hn)s) occurs at

N ≥ (χ(Hn)− 1) + n.

Proof. Let Hn be the hypergraph corresponding to K1,n+2. By Corollary 5.10 we
have that the stabilization of Ass(R/J2(K1,n+2)s) occurs at

(0.15) N ≥ (n+ 2)− 1 = (2− 1) + n.

By Lemma 5.18, we know that J2(K1,n+2) = J(Hn). This implies that

(0.16) Ass(R/J2(K1,n+2)s) = Ass(R/J(Hn)s).

Finally, we showed in Lemma 5.19 that χ(Hn) = 2 so combining this fact with 0.15 and
0.16, we obtain that the stabilization of Ass(R/J(Hn)s) occurs at

N ≥ (2− 1) + n = (χ(Hn)− 1) + n

as desired. �

We saw earlier how to constuct the hypergraph H2 corresponding to K1,4. We will
conclude this chapter with an example that illustrates the connection between Corollary
5.10 and Corollary 5.20.



Chapter 5. Stars and Associated Primes of Js
2 49

Example 5.21. First consider the star K1,4 on the vertex set {z, x1, x2, x3, x4} with
corresponding Alexander dual J2. By Corollary 5.10 we have that

(0.17) N ≥ 4− 1 = 3,

where N denotes the index of stability of Ass(R/Js2).

Now letH2 be the hypergraph corresponding toK1,4 on the vertex set X = {z, x1, x2, x3, x4}.
By Lemma 5.19 and Corollary 5.20 we have

N ≥ (χ(H2)− 1) + 2 = (2− 1) + 2 = 3,

which is consistent with the bound given for Ass(R/J2(K1,4)s) in 0.17.



CHAPTER 6

Future Work

In this chapter we discuss some conjectures based on observations made while con-
ducting computer experiments using Macaulay2 [16]. Our focus thus far has primarily
been on unrooted trees. In particular, our results in Chapter 5 focused on stars K1,n which
are complete bipartite graphs with a partition class containing a single vertex. Because
of the nature of K1,n, it was necessary that we treated the graph as an unrooted tree in
order to study paths of length two.

It appears that for any rooted tree, the following conjecture holds:

Conjecture 6.1. Let Γ = (VΓ, EΓ) be a rooted tree with corresponding Alexander dual J2.
Then

Ass(R/J2) = Ass(R/Js2)

for all integers s ≥ 1.

Example 6.2. In Example 3.41, we saw the tree Γ2, shown below, on the vertex set
VΓ2 = {x1, x2, x3, x4, x5, x6}. The Alexander dual of I2 corresponding to Γ2 is given by

J2(Γ2) = (x2, x1x4, x4x5, x1x6).

Γ2

x1

x2

x4

x6

x5

x3

Since we can write

J2(Γ) = (x1, x2, x4) ∩ (x1, x2, x5) ∩ (x2, x4, x6)

by the definition of J2 (Definition 3.36), we know that

Ass(R/J2(Γ)) = {(x1, x2, x4), (x1, x2, x5), (x2, x4, x6)}.
50
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Using Macaulay2, we were able to compute Ass(R/J2(Γ2)s) for 1 ≤ s ≤ 62. For all such
s, we found that Ass(R/J2(Γ)) = Ass(R/J2(Γ)s).

If Conjecture 6.1 holds, then the index of stability for any rooted tree is N = 1.

The following examples lead us to a conjecture that extends the result of Theorem 5.8
to a larger family of graphs.

Example 6.3. Let G1 and G2 be the unrooted trees shown below. Consider the Alexander
dual J4 of I4 corresponding to G1 and G2 respectively given by

J4(G1) = (x4, x1, z, x2, x5) ∩ (x4, x1, z, x3, x6) ∩ (x5, x2, z, x3, x6),

J4(G2) = (x5, x1, z, x2, x6) ∩ (x5, x1, z, x3, x7) ∩ (x5, x1, z, x4, x8) ∩ (x6, x2, z, x3, x7) ∩
(x6, x2, z, x4, x8) ∩ (x7, x3, z, x4, x8).

G2

zz

x8x7x6x5x4

x1 x1x2

x6x5

x3 x2 x4x3

G1

We found that

(z, x1, x2, x3, x4, x5, x6) ∈ Ass(R/J4(G1)s),

and

(z, x1, x2, x3, x4, x5, x6, x7, x8) ∈ Ass(R/J4(G2)s
′
)

for 2 ≤ s ≤ 10 and 3 ≤ s′ ≤ 5 respectively.

Example 6.4. Let G be the unrooted tree shown below on the vertex set

VG = {z, x1, x2, x3, x4, x5, x6, x7, x8, x9}.
The Alexander dual J6 of I6 is given by

J6(G) = (x7, x4, x1, z, x2, x5, x8) ∩ (x7, x4, x1, z, x3, x6, x9) ∩ (x8, x5, x2, z, x3, x6, x9).

Then we found that

(z, x1, x2, x3, x4, x5, x6, x7, x8, x9) ∈ Ass(R/J6(G)s)

for 2 ≤ s ≤ 6.

If G′ is the unrooted tree shown below the graph G, then the longest even path of G′

is also of length six. We found that

(z, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ∈ Ass(R/J6(G′)s)

for s = 3. We were able to compute Ass(R/J6(G′)s) for s = 1, 2, 3.
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x7 x8

G′

z

x5 x6
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We observe that the ideal (z, x1, . . . , xn) appears in Ass(R/Js2`) corresponding to the
graphs in Examples 6.3 and 6.4 for s equal to one less than the number of vertices adjacent
to z. Although, due to the size of the graphs, we were only able to compute Ass(R/Js2`)
for a small number of values of s, we make the following conjecture:

Conjecture 6.5. Let G be an unrooted tree on the vertex set VG = {z, x1, . . . , xn} with the
edge set EG = {zx1, zx2, . . . , zxk, x1xk+1, x2xk+2, . . . , xkx2k, xk+1x2k+1, xk+2x2k+2, . . . , x2kx3k, . . .}.
Then

(1) (z, x1, . . . , xn) ∈ Ass(R/Js2`) for all s ≥ k − 1 and
(2) (z, x1, . . . , xn) /∈ Ass(R/Js2`) for all s < k − 1

where 2` is the length of the longest even path of G.

We conclude this chapter with an example showing further evidence that Conjecture
6.5 is true. Again, for each graph G we were only able to compute Ass(R/J2`(G)s) for
small values of s. However with the help of a more powerful computer, we hope to test
larger graphs as well as larger values of s in the future.

Example 6.6. Below we have four graphs, namely G1, G2, G3, and G4 which we treat as
unrooted trees. The longest even path of G1 is of length 8. We were able to compute
Ass(R/J8(G1)s) for 1 ≤ s ≤ 4.
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Moving our attention to the graphs G2 and G3, we can see that the longest even paths
of G2 and G3 are of lengths ten and twelve respectively. We were able to compute both
Ass(R/J10(G2)s) and Ass(R/J12(G3)s) for 1 ≤ s ≤ 3. Finally, consider the graph G4. The
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longest even path of G4 is of length 14. We were only able to compute Ass(R/J14(G4)s)
for s = 1 and s = 2.

Note that in all four graphs the vertex z is adjacent to three vertices, namely x1, x2,
and x3. We found that

• (z, x1, . . . , x12) ∈ Ass(R/J8(G1)s) for s = 2, 3, 4.
• (z, x1, . . . , x15) ∈ Ass(R/J10(G2)s) for s = 2, 3.
• (z, x1, . . . , x18) ∈ Ass(R/J12(G3)s) for s = 2, 3.
• (z, x1, . . . , x21) ∈ Ass(R/J14(G4)s) for s = 2.

In all four cases, the maximal ideal (z, x1, . . . , xn) ⊂ k[z, x1, . . . , xn] appeared in Ass(R/J2`(Gi)
s)

for s = 2, where 2 = 3− 1 is one less than the number of vertices adjacent to z. This is
consistent with Conjecture 6.5.
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