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1. INTRODUCTION

In algebra, finding generators and relations of an algebraic object often provides a better under-
standing of the object and its representations. Likewise, in topology, decomposition of a manifold into
simple pieces is often useful in the study of manifold invariants which behave well under cut and paste
operations. Topological (quantum) field theories (TFTs) produce such invariants, which makes the
construction and the classification of TFTs an interesting problem in topology.

Atiyah [At] axiomatized TFTs as symmetric monoidal functors from cobordism categories to the
category of vector spaces. Using this formulation, TFTs were generalized in two different directions.
The first generalization, so-called extended TFTs, is motivated by the idea of cutting and pasting man-
ifolds in several directions. Accordingly, the study of extended TFTs involves manifolds with corners
and higher categories. The second generalization of TFTs is obtained by considering manifolds en-
dowed with principalG-bundles. WhenG is a discrete group, such theories were introduced by Turaev
[Tu] who named them homotopy (quantum) field theories (HFTs).

Since TFTs are functors on cobordism categories, finding generators and relations of cobordism
categories is the key step toward the construction and classification of TFTs. In my thesis, I combine
two generalizations of TFTs described above; more precisely, I define 2-dimensional extended homo-
topy field theories and classify them by giving a specific presentation of the corresponding cobordism
bicategory in terms of generators and relations.

In dimension 2, Schommer-Pries [Sc] classified extended TFTs and Turaev [Tu] classified HFTs. To
define 2-dimensional extended HFTs, I introduce a 2-dimensionalG-equivariant cobordism bicategory
which contains both the Schommer-Pries’ cobordism bicategory [Sc] and the Turaev’s G-equivariant
cobordism category as subcategories. Using the formalism of HFTs, I generalize the methods intro-
duced in [Sc] and provide a list of generators and relations for this new bicategory. Using this list and
a coherence theorem for symmetric monoidal 2-functors, I classify 2-dimensional extended HFTs.
Conventions. Throughout the paper, G is a fixed discrete group with identity element e ∈ G and X is
a pointed aspherical CW complex with �1(X, x) = G where x is the distinguished point of X.

2. DEFINITIONS

In the following definition, we use pointed manifolds and cobordisms endowed with relative homo-
topy classes of maps to X ≃ BG to describe the principal G-bundles on manifolds.

Definition 2.1. The oriented 2-dimensional G-equivariant cobordism bicategory XBord2 has
(i) compact oriented 0-dimensional manifolds as objects,
(ii) triples (M,T , g) as 1-morphisms whereM is an oriented cobordism between compact oriented

0-manifolds, T ⊂ M is a finite set with )M ⊆ T , and g ∈ [(M,T ), (X, {x})] is a relative
homotopy class,
–The fact that homotopy classes are relative to points allows us to label 1-morphisms with group
elements. Figure 1 shows two 1-morphisms having the same source and target objects. In order
to define 2-morphisms of XBord2 we need to recall certain surfaces with corners. A ⟨2⟩-surface is
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ObjectsM andN 1-morphisms (A, T , g1), (B,U, g2) ∶M → N 2-morphism [(S,R, P )] ∶ (A, T , g1) → (B,U, g2)
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FIGURE 1. Examples of objects, 1-morphisms, and 2-morphisms in XBord2

a compact surface with corners S equipped with two submanifolds with faces )ℎS and )vS called
horizontal and vertical faces respectively such that )S = )ℎS∪)vS and )ℎS∩)vS is either empty or a
face of both. A ⟨2⟩-surface S is said to be cobordism type if the vertical boundary )vS is topologically
trivial (see S in Figure 1) –

(iii) isomorphism classes of triples (S,R, P ) as 2-morphisms where S is an oriented cobordism type
⟨2⟩-surface, R ⊂ )S is a finite subset, and P ∈ [(S,R), (X, {x})] is a relative homotopy class
such that )ℎS ∩ )vS ⊂ R, )vS ∩ R = )ℎS ∩ )vS, and the restriction P to each component
of vertical face is the constant homotopy class. Two such triples (S,R, P ) and (S′, R′, P ′) are
isomorphic if there exists a diffeomorphism F ∶ S → S′ whose restriction to )S is identity with
F (R) = R′ and P = P ′◦[F ] ∈ [(S,R), (X, {x})].

Note that the source and target 1-morphisms of a 2-morphism are given by the specific connected
components of the horizontal face (see Figure 1). Also, the disjoint union operation (⨿) turnsXBord2
into a symmetric monoidal bicategory.

Definition 2.2. For a symmetric monoidal bicategory (C , ⊗), a C -valued oriented 2-dimensional ex-
tended homotopy field theory (E-HFTs) with target X ≃ K(G, 1) is a symmetric monoidal 2-functor

Z ∶ (XBord2,⨿)→ (C , ⊗).

3. MAIN RESULTS

For any symmetric monoidal bicategory C , the classification of C -valued E-HFTs with target X
is formulated below in terms of equivalence of two bicategories. The first bicategory E-HFT(X,C )
is a functor bicategory which has C -valued oriented 2-dimensional E-HFTs with target X as objects,
symmetric monoidal natural transformations between such 2-functors as 1-morphisms, and symmetric
monoidal modifications between such transformations as 2-morphisms (see [Sc]).

To describe the second bicategoryXℙ(C ), we first give a presentationXℙ ofXBord2 by generators
and relations. A presentation consists of four sets; namely generating objects, generating 1-morphisms,
generating 2-morphisms, and generating relations among 2-morphisms. Each presentationℙ gives rise
to a freely generated symmetric monoidal bicategory F(ℙ) and ℙ is called a presentation of C if there
exists a symmetric monoidal equivalence F(ℙ)→ C . Figure 2 shows one, denoted byXℙ, forXBord2.

For the presentationXℙ given in Figure 2 the objects ofXℙ(C ) are images of the generators ofXℙ
subject to the relations, the 1-morphisms are natural maps taking generating objects to 1-morphisms
of C and generating 1-morphisms to 2-morphisms of C , and the 2-morphisms are natural maps taking
generators to 2-morphisms of C .

Theorem 3.1. Let Xℙ be the presentation of the bicategory XBord2 given in Figure 2. Then for any
symmetric monoidal bicategory C there is an equivalence of bicategories E-HFT(X,C ) ≃ Xℙ(C ).
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FIGURE 2. Generating objects, 1-morphisms, 2-morphisms, and relations among 2-morphisms

Next, for any commutative ring k, we study Alg2k-valued E-HFTs where the symmetric monoidal
bicategory (Alg2k, ⊗k) has k-algebras as objects, bimodules as 1-morphisms, and bimodule maps as
2-morphisms. The following notions are the ingredients of the next theorem. A strongly graded G-
algebra is a G-graded associative k-algebra A = ⊕g∈GAg with unity such that AgAg′ = Agg′ for all
g, g′ ∈ G. The opposite G-algebra is Aop = ⊕g∈GAg−1 where the order of multiplication is reversed.

A Frobenius algebra is a pair (A, �) where A = ⊕g∈GAg is a G-algebra such that each Ag is a
finitely generated projective k-module and � ∶ ⊕g∈GAg ⊗ Ag−1 → k is a nondegenerate bilinear
form satisfying �(ab, c) = �(a, bc) for any a, b, c ∈ A. A quasi-biangular G-algebra is a strongly
graded Frobenius G-algebra (A, �z) such that Ae is a separable algebra and �z is a trace given by
�z(a, b) = Tr(�abz ∶ Ae → Ae) where �abz is the mutliplication by abz map and z is a fixed central
element in Ae. Lastly, we need G-graded Morita contexts between G-algebras which were introduced
by Boisen [Bo]. I introduce the notion of compatibility for a graded Morita context between Frobenius
G-algebras as a condition about preserving the Frobenius structures (see [Sö]).

Theorem 3.2. Any Alg2k-valued oriented 2-dimensional E-HFT with target X ≃ K(G, 1) determines
a triple (A,B, � ) where A and B are quasi-biangular G-algebras, and � is a compatible G-graded
Morita context between A and Bop. Moreover, any such triple (A,B, � ) is realized by an oriented
2-dimensional E-HFT with target X.
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Every 2-dimensional E-HFT gives rise to a nonextended one by restricting Z ∶ XBord2 → Alg2k
to full subcategory XCob2 consisting of circles and cobordisms between them. The relation between
these nonextended HFTs and Turaev’s classification [Tu] of (nonextended) 2-dimensional HFTs in
terms of crossed Frobenius G-algebras is given by the notion of a G-center (see [Sö]).

Corollary 3.2.1. Let Z ∶ XBord2 → Alg2k be an oriented E-HFT giving (A,B, � ). Then, the nonex-
tended oriented HFT obtained fromZ by restricting toXCob2 is the nonextended oriented HFT asso-
ciated to the G-center of the quasi-biangular G-algebra (A, �A).

By studying the 1- and 2-morphisms of Xℙ(Alg2k) I obtain the following result.

Theorem 3.3. Let FrobG be the bicategory of quasi-biangular G-algebras, compatible G-graded
Morita contexts, and equivalences of such Morita contexts. Then, there exists an equivalence of bicat-
egories E-HFT(X,Alg2k) ≃ FrobG.

4. APPLICATIONS

In their seminal paper, J. Baez and J. Dolan [BD] stated a stabilization hypothesis, a tangle hy-
pothesis, and a cobordism hypothesis. These hypotheses are interconnected and originate from the
connections between topology and higher categories. For brevity, here we only focus on the cobor-
dism hypothesis which is now a theorem due to Lurie [Lu] and Ayala-Francis [AF]. This theorem
gives a classification of fully-extended1 framed2 TFTs in terms of specific objects in the target higher
category called fully-dualizable objects:

Fully-extended framed TFTs
Bijection
←←←←←←←←←←←←←←←←←←←←←←←←→ Fully-dualizable objects.

Lurie [Lu] reformulated the cobordism hypothesis using (∞, n)-categories and provided a sketch
of a proof. His formalism replaces the bijection with the weak homotopy equivalence between the
space of fully-extended framed TFTs and the space of fully-dualizable objects. Moreover, Lurie [Lu]
generalized the cobordism hypothesis tomanifolds equippedwith (topological) structures like principal
Γ-bundles for a group Γ. This generalization uses the orthogonal group action on the space of fully-
dualizable objects and homotopy fixed points:

Space of fully-extended Γ-structured TFTs oo
Weak homotopy equivalence //

When Γ={e}

��

Space of homotopy Γ-fixed points

When Γ={e}

��
Space of fully-extended framed TFTs oo

Weak homotopy equivalence
//Space of fully-dualizable objects

In this approach, 2-dimensional E-HFTs with target X ≃ K(G, 1) correspond to (G × SO(2))-
structured 2-dimensional E-TFTs. When k is an algebraically closed field of characteristic zero, Davi-
dovich [Da] computed homotopy (G × SO(2))-fixed points in Alg2k as quasi-biangular G-algebras.
Then, the comparison of the classification result stated above with Davidovich’s result on homotopy
(G × SO(2))-fixed points yields a new proof of the (G × SO(2))-structured cobordism hypothesis.

Remark. There are similar theorems and their applications in the unoriented setting (see [Sö]).
1Fully-extended means the extended cobordism higher category has 0-dimensional manifolds as objects.
2Framed TFTs are defined using manifolds and cobordisms carrying a framing.
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