Survey on low-dimensional HQFTs

Quantum Symmetries Student Seminar

Kursat Sozer
kursat.sozer@univ-lille.fr

November 20, 2020

Functorial approach to TUFTs

$$
\left(\underline{\mathbf{C o b}_{n}}, \sqcup, \phi, \sigma\right)
$$

Objects: Closed oriented ($n-1$)-dimensional manifolds

Morphisms: Oriented n-dimensional cobordisms up to orientation preserving diffeomorphisms relative to boundary

$$
\left(\underline{\operatorname{Vect}_{\mathbb{C}}}, \otimes_{\dot{q}}, \Psi, T\right)
$$

Objects: Finite dimensional complex vector spaces

Morphisms: Linear transformations

$$
\begin{aligned}
& \text { manifolds are either abstract manifolds } \\
& \text { or embedded in } \mathbb{R}^{N(n) \gg 0}
\end{aligned}
$$

Let M_{1} and M_{2} be $(n-1)$-dim closed oriented manifolds
between $M_{1} \& M_{2}$ is a quintuple $\left(W, M_{1}, M_{2}, \Psi_{1}, \Psi_{2}\right)$
compact oriented

$$
n \text {-dim manifold }
$$

$$
\text { with } \partial W=\overline{\Psi_{1}\left(M_{1}\right)} \sqcup \Psi_{2}\left(M_{2}\right)
$$

$$
\psi_{i}: M_{i} \hookrightarrow \partial W \text { orientation }
$$ preserving embedding

Functorial approach to TQFTs

Cob_{n}
Objects: Closed oriented ($n-1$)-dimensional manifolds

Morphisms: Oriented n-dimensional cobordisms up to orientation preserving diffeomorphisms relative to boundary

Vect $_{\mathbb{C}}$

Objects: Finite dimensional complex vector spaces

Morphisms: Linear transformations

Definition (Atiyah)

An n-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor $Z:\left(\operatorname{Cob}_{n}, \amalg\right) \rightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes\right)$.

$$
\begin{aligned}
& \text { produce } \text { manifold invariants which behave well under gluing. } \\
& \text { numerical }
\end{aligned}
$$

Manifolds with maps to $K(\underset{\downarrow}{G}, 1)$-space and category XCob $_{n}$ discrete group

The main idea of HQFTs with $K(G, 1)$-targets: $\quad X$ with a base point $x \in X$
Equip manifolds and cobordisms with homotopy classes of maps to a fixed $K(G, 1)$-space
each connected
component is
XCob_{n} equipped with a point
Objects: Closed pointed oriented ($n-1$)-dimensional manifolds equipped with homotopy classes of maps to (X, x) relative

Morphisms: Equivalence classes of oriented n-dimensional cobordisms equipped with homotopy classes of maps to X $\operatorname{Cob}_{n} \hookrightarrow X \operatorname{Cob}_{n} \quad$ if Y_{12} is contractible target

- add base points
- consider trivial
homotopy classes
K.Sozer • Survey on low-dimensional HQFTs • November 20, 2020
a model for classifying space BG

Homotopy Quantum Field Theories

The main idea of HQFTs with $K(G, 1)$-targets:
Equip manifolds and cobordisms with homotopy classes of maps to a fixed $K(G, 1)$-space

XCob_{n}

Objects: Closed pointed oriented ($n-1$)-dimensional manifolds equipped with homotopy classes of maps to (X, x)

Morphisms: Equivalence classes of oriented n-dimensional cobordisms equipped with homotopy classes of maps to X

Definition (Turaev)

An n-dimensional homotopy quantum field theory with target X is a symmetric
monoidal functor ${ }^{12} K(6,1)$
$Z:\left(\mathrm{XCob}_{n}, \amalg\right) \rightarrow\left(\operatorname{Vect}_{\mathbb{C}}, \otimes\right)$.
invariant of
monifolds with
homotopy classes

1-dimensional HQFTs
w.r.t composition 2 disj. union

Generators ${\text { for the skeleton of } \mathrm{XCob}_{1}}^{\underline{1}}$
Objects: $\quad-\quad z\left(\begin{array}{l}+ \\ 0\end{array}=V \quad z(:)=W\right.$

e is the identity elf. of G

Relations for the skeleton of XCob_{1}

$$
\begin{aligned}
& g \psi=\psi g h \Rightarrow \rho_{h} \circ \rho_{g}=\rho_{g h} \rho: G \rightarrow G L(V) \\
& h \psi)
\end{aligned}
$$

A 1-dimensional HQFT, with $K(G, 1)$-target determines a finite dim. ϕ-repress. ρ of G.

$$
z: X \operatorname{cob}_{1} \rightarrow V_{\text {ct }}^{\phi},
$$

$$
Z\left(O^{\prime}\right)=x_{p}(g) \in \Phi
$$

2-dimensional HQFTs with $K(G, 1)$-targets

2-dimensional HeFTs
Definition
A crossed Frobenius G-algebra is a triple $\left(A=\oplus_{g \in G} A_{g}, \eta, \varphi\right)$ where
■ $A=\oplus_{g \in G} A_{g}$ is a G-graded associative \mathbb{k}-algebra ie. $A_{g} A_{h} \subseteq A_{g h}$,

- $\eta: A \otimes A \rightarrow \mathbb{k}$ is a nondegenerate symmetric bilinear form with $\left.\eta\right|_{A_{g} \otimes A_{h}}=0$ for $g h \neq e$,

$$
e^{\text {Agh }} e^{A_{g h g}{ }^{-1}=A_{g h}}
$$

- $\varphi: G \rightarrow \operatorname{Aut}(A)$ with $a b=\varphi_{g}(b) a$ for all $a \in A_{g}, b \in A_{h}$ and $g, h \in G$.

φ-crossed commutativity
 $A_{g} \otimes A_{g}-1$

 mon. not. trans.

Theorem (Turaev)
There is an equivalence of categories Fund $\left(X \operatorname{Cob}_{2}\right.$, Vest $\left._{\mathbb{C}}\right) \simeq G F r o b_{\mathbb{C}}$.

Note on 2-dimensional extended HQFTs
Question: Can we combine 1- and 2-dimensional HEFTs considering X-surfaces as cobordisms between cobordisms similar to the notion of morphisms between morphisms in higher category theory? Ye s !

Objects:

1-morphisms:

Every $Z: X$ Bord $_{2} \rightarrow$ Alg $_{1 k}^{2}$
gives a G-graded algebra
$A=\underset{g \in G}{ } A_{g}$ and nondeg sym.
bilinear form $\eta: A \otimes A \rightarrow \mathbb{K}$ such that

- Each A_{g} is rank 1 $\left(A_{e}, A_{e}\right)$-bimodule
- $A e$ is semisimple \mathbb{k}-algebra.

Some works on 2-dimensional HQFTs

■ For a finite group G, G-equivariant TQFTs were initially studied by Dijkgraaf-Witten, Freed, and Quinn.

■ Unoriented 2-dimensional HQFTs were studied by Tagami and Kapustin-Turzillo.

■ 2-dimensional HQFTs with $K(A, 2)$-targets were studied by Brightwell-Turner and Rodrigues.

■ 2-dimensional HQFTs with arbitrary targets were studied by Staic-Turaev.

- The connection between 2-dimensional HQFTs and flat gerbes were studied by Rodrigues and Bunke-Turner-Willerton.

■ 2-dimensional extended HQFTs with arbitrary targets is a work on progress.

3-dimensional HQFTs

State-sum HQFT

■ studied by Turaev-Virelizier generalizing the work of Turaev-Viro-Barrett-Westbury on state-sum TQFTs.

■ utilises triangulations of 3-manifolds, more generally skeletons of 3-manifolds.

- constructed from a spherical G-fusion

- constructed from a G-modular category

Spherical G-fusion categories

A G-graded category is a \mathbb{C}-additive monoidal category \mathcal{C} endowed with \mathbb{C}-additive full-subcategories $\left\{\mathcal{C}_{g}\right\}_{g \in G}$ such that

1. each object $U \in \mathcal{C}$ splits as $\oplus_{i=1}^{n} U_{g_{i}}$ where $U_{g_{i}} \in \mathcal{C}_{g_{i}}$,
2. if $U \in \mathcal{C}_{g}$ and $V \in \mathcal{C}_{h}$, then $U \otimes V \in \mathcal{C}_{g h}, \sim U \in e_{g}$
3. if $U \in \mathcal{C}_{g}$ and $V \in \mathcal{C}_{h}$, then $\operatorname{Hom}_{\mathcal{C}}(U, V)=0$, $u^{*} \in e_{g-1}$
4. the unit object $1 \in \mathcal{C}_{e}{ }^{\boldsymbol{x}}$.

Diagram calculus
for pivotal cats

- A G-graded category \mathcal{C} is spherical if it is spherical as a monoidal category.

■ A G-graded category is pre-fusion if it is prefusion as a monoidal category. In a pre-fusion G-category $\mathcal{C}=\oplus_{g \in G} \mathcal{C}_{g}$ each object of \mathcal{C}_{g} is a finite direct sum of simple objects of \mathcal{C}_{g}.

- A G-fusion category is a pre-fusion G-category $\mathcal{C}=\oplus_{g \in G} \mathcal{C}_{g}$ such that the set of isomorphism classes of simple objects of \mathcal{C}_{g} is finite and nonempty for all $g \in G$.

3-dimensional state-sum HQFTs
■ Let \mathcal{C} be a spherical G-fusion category with a set $I=\coprod_{g \in G} I_{g}$ of $\int_{\text {simple objects. }}$.

- A \mathcal{C}-colored graph in S^{2} is an oriented graph graph in S^{2} whose edges are labeled with an object of \mathcal{C}. Vertices are colored as follows:

For a given C-colored graph Γ, using graphical calculus we have $\mathbb{F}_{e}(\Gamma): \underset{v \in \Gamma}{\otimes} H_{v} \rightarrow$ End $(1) \simeq \mathbb{K}$

$$
F_{e}(\Gamma) \in(\bigotimes_{v \in \Gamma}^{\underbrace{v}_{\text {all vertices }}} H_{v})^{*}
$$

- Let M be a closed oriented 3-manifold equipped with a homotopy class $p \in[M, X]$ and let T be a triangulation of M.

3-dimensional state-sum HQFTs

■ For a given coloring c the number $|c| \in \mathbb{k}$ is defined as follows:

$$
\begin{aligned}
& \text { Ateach vertex of } T \text { take } c(s) \\
& \text { a ball } B^{3} c \text { entered at the vertex } \\
& \partial B^{3} \cap T^{2} \text { gives a e-colored } \\
& \text { graph } \Gamma^{\Gamma} \text { on sphere } \partial B^{3} \\
& \text { - vertices of } \Gamma \text { :edges of } T^{2} \\
& \text { - edges of } \Gamma \text { : interior of } T^{2}
\end{aligned}
$$

Theorem (Turaev, Virelizier)

Let (M, p) be a 3 -dimensional closed X-cobordism with a triangulation T and let \mathcal{C} be a spherical G-fusion category with a set $I=\prod_{g \in G} I_{g}$ of simple objects. The number

$$
|M|_{\mathcal{C}}=\left(\operatorname{dim}\left(\mathcal{C}_{e}\right)\right)^{-\left|T^{3}\right|} \sum_{\underbrace{c}}^{\underbrace{}_{\text {over all colorings }}}\left(\prod_{r \in T^{2}} \operatorname{dim} c(r)\right)|c| \in \mathbb{k}
$$

is a topological invariant of M where $\left|T^{3}\right|$ is the number of 3-simplices.

G-modular categories

- A G-crossed(category is a G-graded category \mathcal{C} equipped with a crossing; a monoidal functor $\varphi: \bar{G} \rightarrow \operatorname{Aut}(\mathcal{C})$ such that $\tilde{\varphi}_{g}\left(\mathcal{C}_{h}\right) \subseteq \mathcal{C}_{g^{-1} h g}$ for all $g, h \in G$.
- A G-braided category is a G-crossed category (\mathcal{C}, φ) endowed with a G-braiding τ i.e. the family of isomorphisms $\left\{\tau_{X, Y}: X \otimes Y \rightarrow Y \otimes \varphi_{|Y|}(X)\right\}_{X, Y \in \mathcal{C}, \text {, is homogeneous }}$ satisfying certain conditions.
$Y \in e_{g}$ for some $g \in \sigma$

■ A twist of \mathcal{C} is the family of isomorphisms $\theta=\left\{\theta_{X}: X \rightarrow \varphi_{|X|}(X)\right\}_{X}$ is homogeneous.

- A G-ribbon category is a pivotal G-graded category \mathcal{C} such that its crossing φ is pivotal and its twist θ is self-dual.
- A G-modular category is a G-ribbon G-fusion category whose S-matrix is invertible.
- A G-modular category is a G-ribbon G-fusion category whose neutral component is a modular tensor category.

3-dimensional surgery HQFTs

■ $\mathcal{D}=\sqrt{\operatorname{dim}\left(\mathcal{C}_{e}\right)}=\sqrt{\sum_{i \in I_{e}} \operatorname{dim}_{l}(i) \operatorname{dim}_{r}(i)} \in \mathbb{k}^{*}$. $\longrightarrow \dot{\psi}_{i}^{\nu_{i}}=v_{i} \psi$

- $\Delta_{-}=\sum_{i \in l_{e}} \nu_{i}^{-1}(\operatorname{dim}(i))^{2} \in \mathbb{k}$ where $\theta_{i}=\xrightarrow[\nu_{i} i \mathrm{id}_{i} \text { for the twist } \theta_{i}: i \rightarrow i \text { orphism. } . ~ . ~ . ~]{\text { n }}$
$\square L(\mathcal{C})=\oplus_{g \in G} L_{g}$ with $L_{g}=\oplus_{X \in \operatorname{Ob}\left(\mathcal{C}_{g}\right)} \operatorname{End}_{\mathcal{C}}(X) / \sim$ is the fusion \mathbb{k}-algebra where $f \circ g \sim g \circ f$ for $f: X \rightarrow Y$ and $g: Y \rightarrow X$ in $\mathcal{C}_{g} . \quad L(\varphi)$ is a free \mathbb{k}-module with basis $\{\langle i\rangle\}$
- $\omega_{\mathcal{C}}^{g}=\sum_{i \in I_{g}} \operatorname{dim}(i)\left\langle\mathrm{id}_{i}\right\rangle \in L_{g}$ and $\omega_{\mathcal{C}}=\left(\omega_{\mathcal{C}}^{g}\right)_{g \in G}$.

■ $\Lambda: \otimes_{r=1}^{n} L_{g_{r}} \rightarrow \mathbb{k}$ is an n-form defined as follows: $\left[\gamma l_{e} \gamma^{-1}\right]$,complement $\left.\sim_{\sim}^{(~} \mu_{1} p \in[m, x]\right)$

3-dimensional surgery HQFTs

Theorem (Turaev, Virelizier)

Let (M, p) be a 3 -dimensional closed X-cobordism obtained as a surgery on S^{3} along a framed link ℓ with $\# \ell$ components. Let \mathcal{C} be G-modular category with rank \mathcal{D}. Then the number

$$
\tau_{\mathcal{C}}(M)=\Delta_{-}^{\sigma(\ell)} \mathcal{D}^{-\sigma(\ell)-\# \ell-1} F\left(\ell, p, \omega_{\mathcal{C}}\right) \in \mathbb{k}
$$

is a homeomorphism invariant X-cobordism (M, p) where $\sigma(\ell)$ is the signature of the compact oriented 4-manifold B_{ℓ} with $\partial B_{\ell}=M$, obtained from B^{4} by attaching 2-handles along tubular neighborhoods of the components of ℓ in ∂B^{4}.

Graded center: the connection between two approaches

The G-center $\mathcal{Z}_{G}(\mathcal{C})$ of a G-graded category $\bigvee_{\text {over }} \mathbb{k}$ is the category obtained as the (left) center of \mathcal{C} relative to its neutral component \mathcal{C}_{e}. That is,

■ the objects of $\mathcal{Z}_{G}(\mathcal{C})$ are (left) half braidings of \mathcal{C} relative to \mathcal{C}_{e}; pairs (A, σ) where $A \in \mathrm{Ob}(\mathcal{C})$ and $\sigma=\left\{\sigma_{X}: A \otimes X \rightarrow X \otimes A\right\}_{X \in \mathcal{C}_{e}}$ satisfying $\left.\sigma_{X \otimes Y}\left(\mathrm{id}_{X} \otimes \sigma_{Y}\right)\left(\sigma_{X} \otimes \mathrm{id}\right)_{Y}\right)$,

- morphisms $\operatorname{Hom}\left((A, \sigma),\left(A^{\prime}, \sigma^{\prime}\right)\right)$ is a morphism $f: A \rightarrow A^{\prime}$ such that $\left(\mathrm{id}_{X} \otimes f\right) \sigma_{X}=\sigma_{X}^{\prime}\left(f \otimes \mathrm{id}_{X}\right)$ for all $X \in \mathrm{Ob}\left(\mathcal{C}_{e}\right)$.

Theorem (Turaev, Virelizier)

If \mathcal{C} is an additive spherical G-fusion category over an algebraically closed field such that $\operatorname{dim}\left(\mathcal{C}_{e}\right) \neq 0$, then $\mathcal{Z}_{G}(\mathcal{C})$ is a G-modular category.

Theorem (Turaev, Virelizier)

For any additive spherical G-fusion category $\mathcal{C}=\oplus_{g \in G} \mathcal{C}_{g}$ over an algebraically closed field \mathbb{k} with $\operatorname{dim}\left(\mathcal{C}_{e}\right) \neq 0$, the state-sum HQFT $|\cdot|_{\mathcal{C}}$ and the surgery $\operatorname{HQFT} \tau_{\mathcal{Z}_{6}(\mathcal{C})}$ are isomorphic.

Some works on 3-dimensional HQFTs and G-tensor categories

■ For a finite group G, G-equivariant 3-dimensional TQFTs were initially studied by Dijkgraaf-Witten and Freed-Quinn.

■ Extended 3-dimensional HQFTs were studied by Schweigert-Woike, Müller-Woike, and Maier-Nikolaus-Schweigert.

■ Braided crossed G-categories were studied by Müger.

■ Modular G-tensor categories were studied by Maier-Nikolaus-Schweigert, A. Krillov, and Turaev-Virelizier.

■ Generalization of Kuperberg and Hennings invariants to 3-dimensional closed X-manifolds were studied by Virelizier.

Thank You for Your Attention!

