Survey on low-dimensional HQFTs
Quantum Symmetries Student Seminar

Kursat Sozer
kursat.sozer@univ-lille.fr

November 20, 2020
Functorial approach to TQFTs

\[
\left(\text{Cob}_n, \sqcup, \phi, \sigma \right)
\]

Objects: Closed oriented \((n - 1)\)-dimensional manifolds

Morphisms: Oriented \(n\)-dimensional cobordisms up to orientation preserving diffeomorphisms relative to boundary

\[
\left(\text{Vect}_C, \otimes, \phi, T \right)
\]

Objects: Finite dimensional complex vector spaces

Morphisms: Linear transformations

Let \(M_1\) and \(M_2\) be \((n-1)\)-dim closed oriented manifolds.

Composition of morphisms for \(n=2\)

Symmetric braiding for \(n=2\)

Different choices of collars yield different but diffeomorphic (equivalent) smooth struct. on manifolds are either abstract manifolds or embedded in \(\mathbb{R}^{N(n)}\)}
Functorial approach to TQFTs

\textbf{Objects:} Closed oriented \((n-1)\)-dimensional manifolds

\textbf{Morphisms:} Oriented \(n\)-dimensional cobordisms up to orientation preserving diffeomorphisms relative to boundary

\begin{align*}
\textbf{Cob}_n & \quad \textbf{Vect}_\mathbb{C} \\
\textbf{Objects:} & \quad \text{Finite dimensional complex vector spaces} \\
\textbf{Morphisms:} & \quad \text{Linear transformations}
\end{align*}

\textbf{Definition (Atiyah)}

An \(n\)-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor \(Z : (\text{Cob}_n, \amalg) \rightarrow (\text{Vect}_\mathbb{C}, \otimes)\).

produce manifold invariants which behave well under gluing.

numerical
Manifolds with maps to $K(G, 1)$-**space and category** XCob_n

The main idea of HQFTs with $K(G, 1)$-**targets:**

Equip manifolds and cobordisms with homotopy classes of maps to a fixed $K(G, 1)$-space

Objects: Closed **pointed** oriented $(n - 1)$-dimensional manifolds equipped with homotopy classes of maps to (X, x)

Morphisms: Equivalence classes of oriented n-dimensional cobordisms equipped with homotopy classes of maps to X
Homotopy Quantum Field Theories

The main idea of HQFTs with $K(G, 1)$-targets:

Equip manifolds and cobordisms with homotopy classes of maps to a fixed $K(G, 1)$-space

X Cob_n

Objects: Closed *pointed* oriented $(n - 1)$-dimensional manifolds equipped with homotopy classes of maps to (X, x)

Morphisms: Equivalence classes of oriented n-dimensional cobordisms equipped with homotopy classes of maps to X

Definition (Turaev)

An n-dimensional homotopy quantum field theory with target X is a symmetric monoidal functor $Z : (\text{X Cob}_n, \sqcup) \rightarrow (\text{Vect}_\mathbb{C}, \otimes)$. An invariant of manifolds with homotopy classes

\[n \geq 2 \]
1-dimensional HQFTs

Generators for the skeleton of XCob_1

Objects: $\hat{\tau} \mapsto \mathcal{Z}(\hat{\tau}) = V \quad \mathcal{Z}(\hat{\imath}) = W$

Morphisms: $g \mapsto \rho_g$ indexed by $g \in G$

$\Rightarrow \rho_g \circ \rho_h = \rho_{gh}$ for $g = e \Rightarrow \text{id} \times \text{id}$

$\text{e is the identity elt. of } G$

Relations for the skeleton of XCob_1

$\Rightarrow \eta$ is nondegenerate

$\Rightarrow W \cong V^* \Rightarrow \eta = \text{ev}$

A 1-dimensional HQFT with $K(G, 1)$-target determines a finite $\dim.$ \mathcal{C}-repres. ρ of G.

$\mathcal{Z}(\hat{\imath}) = \chi^G_{\rho}(g) \in \mathcal{C}$
2-dimensional HQFTs with $K(G, 1)$-targets

Generators for the skeleton of X Cob_2

Objects: $\{ g \}$ for $g \in G$

$\mathcal{Z}(\mathbf{g}) = A_g$

Morphisms:

A_g from $g h h^{-1}$ to $A_{h g h^{-1}}$

$A_{g h}$ from $g h$ to $A_{h g h^{-1}}$

Relations for the skeleton of X Cob_2

$A \cong \bigoplus_{g \in G} A_g$

$\varphi : G \to \text{Aut}(A)$

\Rightarrow + many other relations

Nondegenerate symmetric bilinear form

K. Sozer • Survey on low-dimensional HQFTs • November 20, 2020
2-dimensional HQFTs

Definition

A crossed Frobenius G-algebra is a triple $(A = \bigoplus_{g \in G} A_g, \eta, \varphi)$ where

- $A = \bigoplus_{g \in G} A_g$ is a G-graded associative k-algebra i.e. $A_g A_h \subseteq A_{gh}$,
- $\eta : A \otimes A \to k$ is a nondegenerate symmetric bilinear form with $\eta|_{A_g \otimes A_h} = 0$ for $gh \neq e$,
- $\varphi : G \to \text{Aut}(A)$ with $ab = \varphi_g(b)a$ for all $a \in A_g, b \in A_h$ and $g, h \in G$.

Theorem (Turaev)

There is an equivalence of categories $\text{Func}(\text{XCob}_2, \text{Vect}_\mathbb{C}) \simeq \text{GFrob}_\mathbb{C}$.

\[\eta_h = \begin{cases} g & \text{if } h = g^{-1} \cr g^{-1} & \text{if } h = g \end{cases} \]

\[\varphi_h = \begin{cases} g & \text{if } h = g^{-1} \cr g^{-1} & \text{if } h = g \end{cases} \]
Note on 2-dimensional extended HQFTs

Question: Can we combine 1- and 2-dimensional HQFTs considering X-surfaces as cobordisms between cobordisms similar to the notion of morphisms between morphisms in higher category theory? Yes!

Objects:

1-morphisms:

2-morphisms:

Every \(Z: \text{Bord}_2 \to \text{Alg}_{\mathbb{k}} \)

gives a \(G \)-graded algebra

\(A = \bigoplus_{g \in G} A_g \)

and non-deg sym. bilinear form \(\eta: A \otimes A \to \mathbb{k} \)
such that

- Each \(A_g \) is rank 1 \((A_e,A_e)\)-bimodule
- \(A_e \) is semisimple \(\mathbb{k} \)-algebra.

\[A \otimes_{\mathbb{k}} B \overset{R_g \otimes_{\mathbb{k}} (S_{g'})A \otimes_{\mathbb{k}} B}{\Rightarrow} \text{bimodule map} \]

\[A(M_g)A \otimes_{\mathbb{k}} B(N_{g'})B \]
Some works on 2-dimensional HQFTs

- For a finite group G, G-equivariant TQFTs were initially studied by Dijkgraaf-Witten, Freed, and Quinn.

- Unoriented 2-dimensional HQFTs were studied by Tagami and Kapustin-Turzillo.

- 2-dimensional HQFTs with $K(A, 2)$-targets were studied by Brightwell-Turner and Rodrigues.

- 2-dimensional HQFTs with arbitrary targets were studied by Staic-Turaev.

- The connection between 2-dimensional HQFTs and flat gerbes were studied by Rodrigues and Bunke-Turner-Willerton.

- 2-dimensional extended HQFTs with arbitrary targets is a work on progress.
3-dimensional HQFTs

State-sum HQFT
- studied by Turaev-Virelizier generalizing the work of Turaev-Viro-Barrett-Westbury on state-sum TQFTs.
- utilises triangulations of 3-manifolds, more generally skeletons of 3-manifolds.
- constructed from a spherical G-fusion category.

Surgery HQFT
- studied by Turaev-Virelizier generalizing the work of Reshetikhin-Turaev on surgery TQFT.
- utilises surgery representation of 3-manifolds.
- constructed from a G-modular category.
Spherical G-fusion categories

A **G-graded category** is a \mathbb{C}-additive monoidal category \mathcal{C} endowed with \mathbb{C}-additive full-subcategories $\{\mathcal{C}_g\}_{g \in G}$ such that

1. each object $U \in \mathcal{C}$ splits as $\bigoplus_{i=1}^{n} U_{g_i}$ where $U_{g_i} \in \mathcal{C}_{g_i}$,
2. if $U \in \mathcal{C}_g$ and $V \in \mathcal{C}_h$, then $U \otimes V \in \mathcal{C}_{gh}$,
3. if $U \in \mathcal{C}_g$ and $V \in \mathcal{C}_h$, then $\text{Hom}_{\mathcal{C}}(U, V) = 0$,
4. the unit object $1 \in \mathcal{C}_e$.

A **G-graded category** \mathcal{C} is **spherical** if it is spherical as a monoidal category.

A **G-graded category** is **pre-fusion** if it is prefusion as a monoidal category. In a pre-fusion G-category $\mathcal{C} = \bigoplus_{g \in G} \mathcal{C}_g$ each object of \mathcal{C}_g is a finite direct sum of simple objects of \mathcal{C}_g.

A **G-fusion category** is a pre-fusion G-category $\mathcal{C} = \bigoplus_{g \in G} \mathcal{C}_g$ such that the set of isomorphism classes of simple objects of \mathcal{C}_g is finite and nonempty for all $g \in G$.

Diagram calculus for pivotal cats:

- $\text{id}_X = \begin{array}{c} X \\ X \end{array}$
- $\text{id}_{X^*} = \begin{array}{c} X^* \\ X \end{array}$
- $\text{ev}_X = \begin{array}{c} X \\ Y \end{array}$
- $\text{coev}_X = \begin{array}{c} X^* \\ X \end{array}$
- $\text{tr}_{eg}(f) = \begin{array}{c} X \\ \circ \end{array}$
- $\text{tr}_{rg}(f) = \begin{array}{c} X \\ \circ \end{array}$
3-dimensional state-sum HQFTs

- Let C be a spherical G-fusion category with a set $I = \bigsqcup_{g \in G} I_g$ of simple objects.
- A C-colored graph in S^2 is an oriented graph graph in S^2 whose edges are labeled with an object of C. Vertices are colored as follows:

For a given C-colored graph Γ, using graphical calculus we have $F_e(\Gamma) : \otimes H_v \to \text{End}_c(1) \simeq 1_k$
- Let M be a closed oriented 3-manifold equipped with a homotopy class $p \in [M, X]$ and let T be a triangulation of M.
- A G-labeling is an assignment $\ell : T^2 \to G$ such that $\prod_{i=1}^n \ell(b_i) = e$ around any edge.
- A C-coloring is an assignment $c : T^2 \to I$ such that $c(r) \in I_{\ell(r)}$ for all 2-faces r of T.

\begin{align*}
\text{Hom}(1, i \otimes j \otimes k) &= H_v \\
\text{Hom}(1, c(1) \otimes c(2) \otimes c(3) \otimes c(4)) &= H_c(e) \\
\text{Hom}(1, c(1)^* \otimes c(2) \otimes c(3) \otimes c(4)^*) &= H_c(e^{op})
\end{align*}
3-dimensional state-sum HQFTs

For a given coloring \(c \) the number \(|c| \in \mathbb{k}\) is defined as follows:

At each vertex of \(T \) take a ball \(B^3 \) centered at the vertex \(\partial B^3 \cap T^2 \)
gives a \(c \)-colored graph on sphere \(\partial B^3 \)

- vertices of \(\Gamma \): edges of \(T^2 \)
- edges of \(\Gamma \): interior of \(T^2 \)

\[|c| = \bigotimes_{v \in \partial T} \bigotimes_{e \in T^2} \mathbb{F}(\Gamma_v) \in \mathbb{k} \]

Theorem (Turaev, Virelizier)

Let \((M, p)\) be a 3-dimensional closed \(X \)-cobordism with a triangulation \(T \) and let \(C \) be a spherical \(G \)-fusion category with a set \(I = \coprod_{g \in G} I_g \) of simple objects. The number

\[|M|_C = (\dim(C_e))^{-|T^3|} \sum_{c} \left(\prod_{r \in T^2} \dim c(r) \right) |c| \in \mathbb{k} \]

is a topological invariant of \(M \) where \(|T^3|\) is the number of 3-simplices.
G-modular categories

- A **G-crossed category** is a G-graded category \mathcal{C} equipped with a *crossing*; a monoidal functor $\varphi : \overline{G} \to \text{Aut}(\mathcal{C})$ such that $\varphi_g(\mathcal{C}_h) \subseteq \mathcal{C}_{g^{-1}h}g$ for all $g, h \in G$.

- A **G-braided category** is a G-crossed category (\mathcal{C}, φ) endowed with a **G-braiding** τ i.e. the family of isomorphisms $\{\tau_{X,Y} : X \otimes Y \to Y \otimes \varphi_{|Y|}(X)\}_{X,Y \in \mathcal{C}, Y \text{is homogeneous}}$ satisfying certain conditions.

- A **twist** of \mathcal{C} is the family of isomorphisms $\theta = \{\theta_X : X \to \varphi_{|X|}(X)\}_{X \text{ is homogeneous}}$.

- A **G-ribbon category** is a pivotal G-graded category \mathcal{C} such that its crossing φ is pivotal and its twist θ is self-dual.

- A **G-modular category** is a G-ribbon G-fusion category whose S-matrix is invertible.

- A **G-modular category** is a G-ribbon G-fusion category whose neutral component is a modular tensor category.
3-dimensional surgery HQFTs

Let $I = \Pi_{g \in G} I_g$ be a representative set of simple objects of a G-modular category C.

- $D = \sqrt{\dim(C)} = \sqrt{\sum_{i \in I} \dim_l(i) \dim_r(i)} \in \mathbb{k}^*$.
- $\Delta_\sim = \sum_{i \in I} \nu_i^{-1}(\dim(i))^2 \in \mathbb{k}$ where $\theta_i = \nu_i \text{id}_i$ for the twist $\theta_i : i \to i$ morphism.
- $L(C) = \bigoplus_{g \in G} L_g$ with $L_g = \bigoplus_{X \in \text{Ob}(C_g)} \text{End}_C(X)/\sim$ is the fusion \mathbb{k}-algebra where $f \circ g \sim g \circ f$ for $f : X \to Y$ and $g : Y \to X$ in C_g.
- $\omega_C^g = \sum_{i \in I_g} \dim(i) \langle \text{id}_i \rangle \in L_g$ and $\omega_C = (\omega_C^g)_{g \in G}$.
- $\Lambda : \otimes_{r=1}^n L_g \to \mathbb{k}$ is an n-form defined as follows:

Figure is taken from 3d surgery HQFT paper of Turaev-Virelizier
3-dimensional surgery HQFTs

Theorem (Turaev, Virelizier)

Let \((M, p)\) be a 3-dimensional closed \(X\)-cobordism obtained as a surgery on \(S^3\) along a framed link \(\ell\) with \(#\ell\) components. Let \(C\) be \(G\)-modular category with rank \(D\). Then the number

\[
\tau_C(M) = \Delta_{\sigma(\ell)} D^{-\sigma(\ell) - #\ell - 1} F(\ell, p, \omega_C) \in \mathbb{k}
\]

is a homeomorphism invariant \(X\)-cobordism \((M, p)\) where \(\sigma(\ell)\) is the signature of the compact oriented 4-manifold \(B_\ell\) with \(\partial B_\ell = M\), obtained from \(B^4\) by attaching 2-handles along tubular neighborhoods of the components of \(\ell\) in \(\partial B^4\).
Graded center: the connection between two approaches

The G-center $\mathcal{Z}_G(C)$ of a G-graded category over \mathbb{k} is the category obtained as the (left) center of C relative to its neutral component C_e. That is,

- the objects of $\mathcal{Z}_G(C)$ are (left) half braidings of C relative to C_e; pairs (A, σ) where $A \in \text{Ob}(C)$ and $\sigma = \{\sigma_X : A \otimes X \to X \otimes A\}_{X \in C_e}$ satisfying $\sigma_X \otimes Y (\text{id}_X \otimes \sigma_Y)(\sigma_X \otimes \text{id}_Y)$,

- morphisms $\text{Hom}((A, \sigma), (A', \sigma'))$ is a morphism $f : A \to A'$ such that $(\text{id}_X \otimes f)\sigma_X = \sigma'_X(f \otimes \text{id}_X)$ for all $X \in \text{Ob}(C_e)$.

Theorem (Turaev, Virelizier)

If C is an additive spherical G-fusion category over an algebraically closed field such that $\dim(C_e) \neq 0$, then $\mathcal{Z}_G(C)$ is a G-modular category.

Theorem (Turaev, Virelizier)

For any additive spherical G-fusion category $C = \bigoplus_{g \in G} C_g$ over an algebraically closed field \mathbb{k} with $\dim(C_e) \neq 0$, the state-sum HQFT $|\cdot|_C$ and the surgery HQFT $\tau_{\mathcal{Z}_G(C)}$ are isomorphic.
Some works on 3-dimensional HQFTs and G-tensor categories

- For a finite group G, G-equivariant 3-dimensional TQFTs were initially studied by Dijkgraaf-Witten and Freed-Quinn.

- Extended 3-dimensional HQFTs were studied by Schweigert-Woike, Müller-Woike, and Maier-Nikolaus-Schweigert.

- Braided crossed G-categories were studied by Müger.

- Modular G-tensor categories were studied by Maier-Nikolaus-Schweigert, A. Krillov, and Turaev-Virelizier.

- Generalization of Kuperberg and Hennings invariants to 3-dimensional closed X-manifolds were studied by Virelizier.
Thank You for Your Attention!