Extended HQFTs in dimension 2

Kürşat Sözer

Indiana University Bloomington

ksozer@indiana.edu

Two-dimensional topological quantum field theories

Definition (Atiyah)

A 2-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor $Z : (Cob_2, II, \emptyset, \sigma) \rightarrow (Vect_{\mathbb{C}}, \otimes, \mathbb{C}, T).$

Example:

Two-dimensional topological quantum field theories

Definition (Atiyah)

A 2-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor $Z : (Cob_2, \amalg, \emptyset, \sigma) \rightarrow (Vect_{\mathbb{C}}, \otimes, \mathbb{C}, T).$

Example:

There are two different generalizations of TQFTs:

• Structured TQFTs by considering manifolds equipped with principal *G*-bundles.

• Extended TQFTs by considering manifolds with corners and higher categories.

Structured TQFTs

For a discrete group G, Turaev formulated structured TQFTs by introducing X-manifolds and X-cobordisms.

Two-dimensional homotopy quantum field theories

Definition (Turaev)

Let X be an aspherical pointed CW-complex. A 2-dimensional homotopy quantum field theory (HQFT) with target X is a symmetric monoidal functor $Z : (X \operatorname{Cob}_2, \operatorname{II}) \to (\operatorname{Vect}_{\mathbb{C}}, \otimes).$

Extended TQFTs

The main motivation for extended TQFTs is to cut a cobordism along <u>different directions</u> and compute the invariants from the invariants of simpler pieces.

Two-dimensional Extended TQFTs

Definition (Schommer-Pries)

A 2-dimensional extended TQFT is a symmetric monoidal 2-functor

 $Z: \mathsf{Bord}_2 \to \mathsf{Alg}^2_{\Bbbk}.$

Two-dimensional Extended TQFTs

Definition (Schommer-Pries)

A 2-dimensional extended TQFT is a symmetric monoidal 2-functor

 $Z:\mathsf{Bord}_2\to\mathsf{Alg}^2_\Bbbk.$

- Restriction to constant homotopy classes.
- Restriction to circles and cobordisms between circles.

- Restriction to constant homotopy classes.
- Restriction to circles and cobordisms between circles.

Two-dimensional Extended HQFTs

Definition

A 2-dimensional extended HQFT with target $X \simeq K(G, 1)$ is a symmetric monoidal 2-functor

 $Z: X \operatorname{Bord}_2 \to \operatorname{Alg}^2_{\Bbbk}.$

The main theorem

Theorem (S.)

Every 2-dimensional E-HQFT with target $X \simeq K(G, 1)$ determines a quasi-biangular G-algebra and every quasi-biangular G-algebra determines an E-HQFT. Moreover, G-graded Morita equivalent quasi-biangular G-algebras give equivalent E-HQFTs.

- Frobenius G-algebra is a G-graded k-algebra A = ⊕_{g∈G}A_g equipped with nondegenerate symmetric pairing β : A ⊗ A → k.
- Quasi-biangular G-algebra A is a Frobenius G-algebra such that each A_g is both left and right rank one A_e-module and the principal component A_e is a separable algebra.

Example

 $A = \bigoplus_{g \in G} M_k(\Bbbk)$ where k is invertible in \Bbbk and $\beta(A, B) = k \operatorname{Tr}(AB)$.

The list of generators for $XBord_2$

Extended HQFTs in dimension 2

The list of relations for $XBord_2$

Kürşat Sözer

Extended HQFTs in dimension 2

The Cobordism Hypothesis

 The cobordism hypothesis is a theorem about the classification of fully-extended (local) framed TQFTs in terms of *fully-dualizable objects* of the target higher category.

Fully-extended framed TQFTs \longleftrightarrow Fully-dualizable objects

$$Z \longmapsto Z(\bullet)$$

- Conjectured by J. Baez and J. Dolan.
- Proved by Lurie, Ayala Francis, and Schommer-Pries.
- Why not any object but a fully-dualizable one? Consider a 1-dimensional framed (oriented) TQFT:

$$Z\left(\stackrel{\overset{\overset{\overset{\phantom{\phantom{\phantom{\phantom{}}}}}{\overset{\phantom{\phantom{}}}{\overset{\phantom{}}}}}{\overset{\phantom{}}{\overset{}}}\right) = Z\left(\stackrel{\overset{\overset{\overset{}}}{\overset{}}}{\overset{}{\overset{}}}\right) \circ Z\left(\stackrel{\overset{\overset{\overset{\overset{\phantom}}}{\overset{}}}{\overset{}{\overset{}}}\right) = \frac{Z\left(\stackrel{\overset{}}{\overset{}{\overset{}}}\right)}{\overset{}{\overset{}}} = \frac{Z\left(\stackrel{\overset{}}{\overset{}}\right)}{\overset{}{\overset{}}} = Z\left(\stackrel{\overset{\overset{\phantom}}}{\overset{}}\right)$$

The Structured Cobordism Hypothesis

 Using (∞, n)-categories Lurie reformulated the cobordism hypothesis as the homotopy equivalence of spaces

 $\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{\operatorname{fr}}, \mathcal{C}) \simeq (\mathcal{C}^{\operatorname{fd}})^{\sim}.$

• Lurie also generalized the cobordism hypothesis to manifolds equipped with structures using homotopy fixed points

$$\operatorname{Fun}^{\otimes}(\operatorname{Bord}_n^G, \mathcal{C}) \simeq ((\mathcal{C}^{\operatorname{fd}})^{\sim})^{hG}.$$

When k is algebraically closed field of characteristic zero, Davidovich computed ((Alg^{fd}_k)[∼])^{h(G×SO(2))} as G-equivariant algebras.

Corollary of the main theorem

Let \Bbbk be an algebraically closed field of characteristic zero. Then $(G \times SO(2))$ -structured cobordism hypothesis for Alg^2_{\Bbbk} -valued E-HFTs with target $X \simeq K(G, 1)$ holds true.