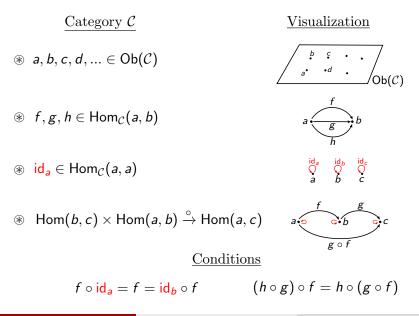
Categories, Higher Categories, and Spaces

Kürşat Sözer

Indiana University Graduate Student Colloquium

Definition of category



Examples

- Top: Category of topological spaces and continuous maps
- Grp: Category of groups and group homomorphisms
- $\bullet~\mathsf{Vect}_\mathbb{R}:\mathsf{Category}~\mathsf{of}$ real vector spaces and linear transformations

Category C is called a *groupoid* if all of its morphisms are **isomorphisms**, i.e. for any $f : a \to b$, there exists $f^{-1} : b \to a$ with

$$f \circ f^{-1} = \operatorname{id}_b \qquad f^{-1} \circ f = \operatorname{id}_a$$

- $\bullet\,$ Considering only homeomorphisms in Top \rightsquigarrow groupoid Top
- Considering only group isomorphisms in Grp → groupoid Grp Note that when C is a groupoid each Hom(a, a) is a group.
- For any (discrete) group G there is a groupoid G with one object

 and Hom(●, ●) ≅ G.

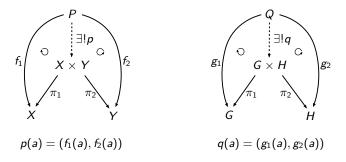
- Unifying common concepts in mathematics (limits, colimits,...)
- A different approach to foundations of mathematics (ETCS)
- Applications in other areas (computer science, physics, biology,...)
- Generalizations of concepts (categorification, sheaves,...)

• ...

Abstractly unifying modern abstract mathematics

Category theory takes a bird's eye view of mathematics. From high in the sky, details become invisible, but we can spot patterns that were impossible to detect from ground level. Tom Leinster

Consider a product $X \times Y$ of top. spaces and a product $G \times H$ of groups

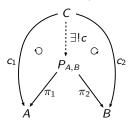


Abstractly unifying modern abstract mathematics

Category theory takes a bird's eye view of mathematics. From high in the sky, details become invisible, but we can spot patterns that were impossible to detect from ground level.

Tom Leinster

A product of objects A and B in a category C is a triple $[P_{A,B}, \pi_1, \pi_2]$ where $\pi_1 : P_{A,B} \to A$ and $\pi_2 : P_{A,B} \to B$ such that for any triple $[C, c_1, c_2]$ there exists a unique map $c : C \to P_{A,B}$ commuting the diagram



❀ Product of objects may not exists in a category, but when it is exists it is unique up to a unique isomorphism!

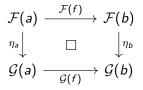
Kürşat Sözer

Functor category $\mathsf{Func}(\mathcal{C}, \mathcal{D})$

How to relate/compare two categories? \rightsquigarrow Functors

$$egin{aligned} \mathcal{F} &: \mathcal{C} o \mathcal{D} \ & \mathbf{a} \mapsto \mathcal{F}(\mathbf{a}) \ & (f: \mathbf{a} o b) \mapsto ig(\mathcal{F}(f) : \mathcal{F}(\mathbf{a}) o \mathcal{F}(b)ig) \end{aligned}$$

How to relate/compare functors? \rightsquigarrow Natural transformations $\eta: \mathcal{F} \to \mathcal{G}$ consists of $\{\eta_a: \mathcal{F}(a) \to \mathcal{G}(a)\}_{a \in \mathcal{C}}$ such that for any $f: a \to b$

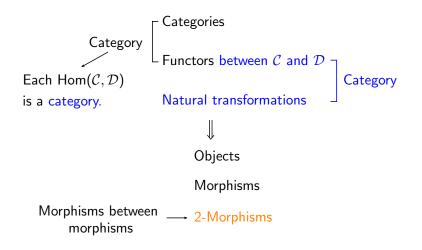


commutes. Natural transformations can be composed. Hence, for any categories C and D we have a new category $\operatorname{Func}(C, D)$ of functors and natural transformations.

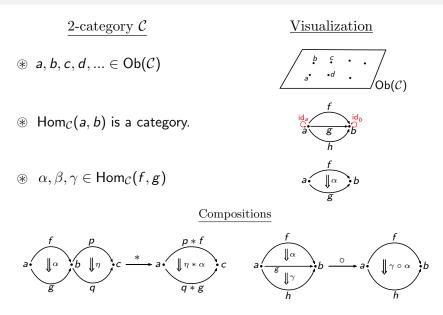
Kürşat Sözer

Categories, Higher Categories, and Spaces

Categories inside a category??



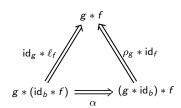
Definition of 2-category

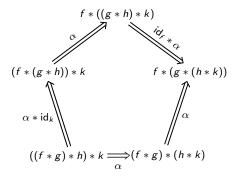


Categories, Higher Categories, and Spaces

Definition of bicategory (Bénabou)

For every composable 1-morphisms f, g, h there exist isomorphisms $\alpha_{f,g,h} : (f * g) * h \rightarrow f * (g * h)$ such that the pentagon diagram commutes.





For any 1-morphism $f : a \rightarrow b$ there exist isomorphisms $\ell_f : id_h * f \rightarrow f$

and $\rho_{f}: f*\mathrm{id}_{\mathbf{a}} \rightarrow f$ such that

the triangle diagram commutes.

Examples of bicategories

Definition (Ehresmann)

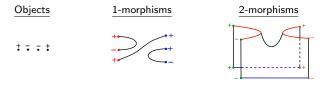
A 2-category or a strict bicategory is a bicategory (C, α, ℓ, ρ) where the natural isomorphisms α, ℓ , and ρ are the identity isomorphisms.

Examples of bicategories

- Cat : categories, functors, and natural transformations
- Alg_k : k-algebras, bimodules, and bimodule maps Composition of bimodules is given by

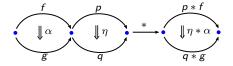
$$_{C}N_{B}\circ _{B}M_{A}={}_{C}N\otimes _{B}M_{A}$$

• Extended 2d-bordism bicategory Bord₂ (Schommer-Pries)



What is a bicategory with one object?

A bicategory $(\mathcal{C}, \alpha, \ell, \rho)$ with a single object \bullet is simply a category $\mathcal{D} := \operatorname{Hom}(\bullet, \bullet)$ equipped with a bifunctor $* : \mathcal{D} \times \mathcal{D} \to \mathcal{D}$.



If C is strict $(\alpha, \ell, \rho = id)$ then * is a unital associative product on D and the pair (D, *) is called a **strict monoidal category**. In the general case, the quintuple $(D, *, \alpha, \ell, \rho)$ is called a *monoidal category*.

A bicategory with one object is a monoidal category.

- (Cat, \times) of (small) categories and functors
- $(Vect_{\mathbb{R}},\otimes_{\mathbb{R}})$ of real vector spaces and linear transformations
- $(\operatorname{Rep}(G), \otimes)$ of finite dim. \mathbb{C} -reps. of group G and intertwiners
- (Cob_n, II) of (n-1)-dim. closed oriented manifolds and cobordisms

A (topological) structure on a monoidal category

A braided monoidal category is a monoidal $(A \otimes B) \otimes C$ $(A \otimes B) \otimes C$ category $(\mathcal{C}, \otimes, \alpha, \ell, \rho, \mathbb{1})$ equipped with $\beta \otimes id$ α a braiding $\{\beta : A \otimes B \to B \otimes A\}_{A,B \in \mathcal{C}}$ в α $\beta := \chi$ which satisfies the conditions $\mathsf{id}\otimes\beta$ α $A \otimes (B \otimes C)$ $\mathrm{id}\otimes\alpha^{-1}$ $\mathsf{id} \otimes \beta$ A symmetric monoidal category is a braided monoidal category such that β = $\beta^2 = \operatorname{id} : A \otimes B \to A \otimes B.$ α^{-1} $\beta \otimes id$ $(A \otimes B) \otimes C$ $(A \otimes B) \otimes C$

Braided and symmetric monoidal categories

Braided and symmetric monoidal categories are useful in

- obtaining knot and link invariants,
- axiomatization of topological quantum field theories,
- formulation of topological quantum computation,
- classification of topological phases of matter,
- representations of groups or Hopf algebras,

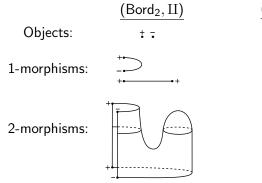
Are there similar structures on bicategories?

In the case of bicategories there is an additional monoidal bicategory between braided and symmetric called *sylleptic monoidal bicategory*.

- Monoidal bicategories
- Braided monoidal bicategories
- Sylleptic monoidal bicategories
- Symmetric monoidal bicategories

We skip definitions of these bicategories. Instead, we give two examples of symmetric monoidal bicategories .

Examples of monoidal bicategories and extended TFTs



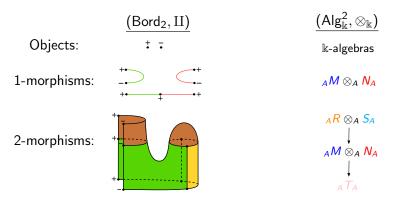
$$\bigl(\mathsf{Alg}^2_\Bbbk,\otimes_\Bbbk\bigr)$$

 \Bbbk -algebras

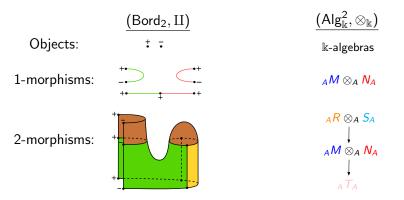
Bimodules

Bimodule maps

Examples of monoidal bicategories and extended TFTs



Examples of monoidal bicategories and extended TFTs



Definition (Schommer-Pries)

A two-dimensional extended TFT is a symmetric monoidal 2-functor

$$Z: (\mathsf{Bord}_2, \amalg) \to (\mathsf{Alg}^2_{\Bbbk}, \otimes_{\Bbbk}).$$

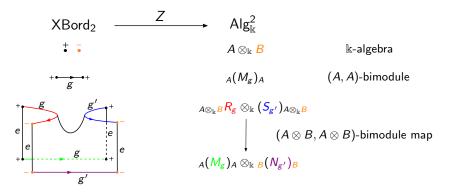
Kürşat Sözer

Categories, Higher Categories, and Spaces

Two-dimensional extended HFTs

Definition (S.)

A two-dimensional extended HFT with target $X \simeq K(G, 1)$ is a symmetric monoidal 2-functor $Z : (X \operatorname{Bord}_2, \amalg) \to (\operatorname{Alg}^2_{\Bbbk}, \otimes_{\Bbbk}).$



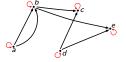
What's next after 2-categories?

3-category \mathcal{C}

Visualization

- Objects
- ③ 1-morphisms

 \circledast 2-morphism $\alpha : f \to g$

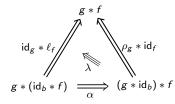


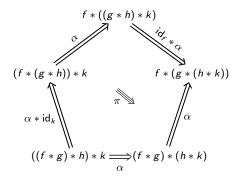
 \circledast 3-morphism $\zeta : \alpha \to \beta$

Descriptive definition of tricategory

There are invertible modifications subject to conditions given by a list of commutative diagrams (see Gordon-Power-Street).

❀ For any two objects a, b ∈ CHom_C(a, b) is a bicategory.

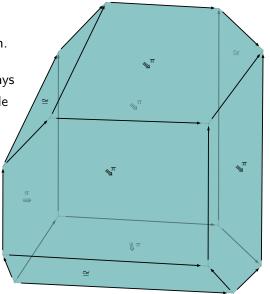




- A tricategory with one object is a monoidal bicategory.
- A tricategory with only one object and one 1-morphism is a braided monoidal category.

Descriptive definition of tricategory: Associahedron K_5

- ③ One of the conditions is given by the associahedron.
- Corners are all different ways of composing 5 composable 1-morphisms.
- \circledast # of vertices (K_{n+1}) II *n*-th Catalan number
- Edges are associator
 2-morphisms.



Descriptive definition of *n*-category

An *n*-category \mathcal{C} consists of

- Objects,
- 1-morphisms between objects,
- 2-morphisms between 1-morphisms,
- (n-1)-morphisms between (n-2)-morphisms,
- *n*-morphisms between (n-1)-morphisms.

Definition

A strict n-category is a diagram of sets with $s \circ s = s \circ t$ and $t \circ s = t \circ t$.

$$C_n \xrightarrow[t_n]{s_n} C_{n-1} \xrightarrow[t_{n-1}]{s_{n-1}} \cdots \xrightarrow[t_2]{s_2} C_1 \xrightarrow[t_1]{s_1} C_0 + \text{assoc} + \text{unit conds.}$$

Definition

Let 0-category be a set. Then a *strict n-category* (all coherence isomorphisms = identities) is a category enriched over (n - 1)-Cat.

Kürşat Sözer

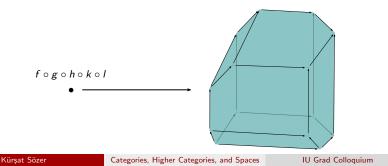
Categories, Higher Categories, and Spaces

Weak *n*-categories

In a strict *n*-category, we can take a pasting diagram of cells and compose them in any order we like, the result will be the same. To make a **weak** *n*-category, we are going to "strectch out" a strict *n*-category a bit, so that there is a bit of "distance" in between these composites done in different orders but not too much. And it shouldn't be empty space in between; they must be connected via mediating cell.

Eugenia Cheng and Aaron Lauda

22 / 36



On different definitions of weak *n*-category

	Authors	Shapes of cells	
-	Batanin	globular	
	Baez-Dolan, Cheng, et al.	opetopic	
	Joyal	globular/simplicial	
	Leinster	globular	
-	May	-	
	Penon	globular	
	Simpson	simplicial/globular	
	Street	simplicial	
	Tamsamani	simplicial/globular	
-	Trimble	path parametrizations	
	bular simplicial		tions
gio	bular simplicial	opetopic path parametriza	Juons
Kürşat	Sözer Categories, Higher Categ	gories, and Spaces IU Grad Colloqu	ium

23 / 36

The main principle of higher category theory

The main principle of higher category is not to say things are equal but only isomorphic.

equality \rightsquigarrow isomorphism

Why? Recall definitions

• 1-category:
$$(h \circ g) \circ f = h \circ (g \circ f)$$
,

: : :

• 2-category:
$$\alpha_{h,g,f}: (h \circ g) \circ f \xrightarrow{\simeq} h \circ (g \circ f)$$
,

• 3-category:
$$\pi_{k,h,g,f}$$
 : (id $* \alpha$) $\circ \alpha \circ (\alpha * id) \xrightarrow{\simeq} \alpha \circ \alpha$,

Every *n*-category can be regarded as an (n + 1)-category with only identity (n + 1)-morphisms i.e. equalities.

Thus, every *n*-category is indeed an ∞ -category whose *j*-morphisms for j > n are identity morphisms.

Grothendieck's dream: "The Homotopy Hypothesis"

Definition

A space X is called *n*-type if
$$\pi_k(X) = 0$$
 for all $k > n$.

Example

$$S^1,\, T^2, \Sigma_g$$
 are 1-types and \mathbb{CP}^∞ is a 2-type.

The Homotopy Hypothesis

The study of *n*-groupoids is the same as the study of *n*-types.

Fundamental *n*-groupoid $\pi_{\leq n}(X)$ of a topological space X has

- points of X as objects,
- paths between points as 1-morphisms,
- paths between paths i.e. homotopies as 2-morphisms,

• homotopy classes of (n-1)-fold homotopies as *n*-morphisms.

The Homotopy Hypothesis

Note that in $\pi_{\leq n}X$, composition is not associative, nor unital, nor the morphisms are invertible on the nose; **only up to homotopy**.

The Homotopy Hypothesis

There is an equivalence of (n + 1)-categories nTypes $\xrightarrow[|-|_n]{\pi \leq n}$ nGrpds

where $|-|_n$ is the (geometric) realization functor and *n*Types has

- *n*-types as objects,
- continuous maps as 1-morphisms,
- homotopies as 2-morphisms,
- homotopies between homotopies as 3-morphisms,

• homotopy classes of *n*-fold homotopies as (n + 1)-morphisms.

The homotopy hypothesis in the limit

In the limit $n \to \infty$ we obtain all spaces (CW complexes).

The Homotopy Hypothesis for $n = \infty$

There is an equivalence of ∞ -categories $Spaces \xrightarrow[|-|_{\infty}]{\pi_{\infty}} \infty$ Grpds where Spaces is the ∞ -category of spaces (CW complexes).

Considering Kan complexes as a model for ∞ -groupoids we can take π_{∞} as the singular simplicial set functor Sing. Then, the Quillen adjunction Top $\xrightarrow[|-|_{\infty}]{\pi_{\infty} = \text{Sing}}$ SSets is the equivalence of ∞ -categories.

Challenging question: Find a definition of n-groupoids so that the Homotopy hypothesis holds in both finite and infinite cases.

There are various different attempts/answers; see • nLab and • Mathoverflow

Strict *n*-groupoids cannot model *n*-types

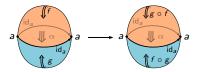
Theorem (Simpson)

Strict 3-groupoids are not sufficient to model all 3-types.

Example (Simpson, Berger)

One cannot obtain the 3-type of S^2 from a realization functor defined on strict 3-groupoids.

Consider a 3-groupoid with a single object a and a single 1-morphism id_a .



In a strict 3-groupoid α is identity. In a weak 3-groupoid α is braiding.

* There exist weak 3-groupoids not equivalent to strict 3-groupoids.

Suspension and Stabilization

	Category	Bicategory	Tricategory	Tetracategory
One	\checkmark	\checkmark	\checkmark	\checkmark
object				
One			\checkmark	\checkmark
1-morphism				
One				\checkmark
2-morphism				
	Monoid	Monoidal	Braided	Symmetric
		category	monoidal	monoidal
			category	category

Definition (Baez-Dolan)

An *m*-tuply monoidal *n*-category is an (m + n)-category with only one *i*-morphism for i < m.

Kürşat Sözer

Categories, Higher Categories, and Spaces

The Periodic Table

	<i>n</i> = 0	n=1	<i>n</i> = 2
m = 0	Set	Category	2-category
m = 1	Monoid	Monoidal	Monoidal
		category	bicategory
<i>m</i> = 2	Commutative	Braided	Braided mon
	monoid	mon category	bicategory
<i>m</i> = 3	"	Symmetric	Sylleptic mon
		mon category	bicategory
<i>m</i> = 4	11	11	Symmetric mon
			bicategory
<i>m</i> = 5	"	11	"

Stabilization Hypothesis (Baez-Dolan)

Periodic table stabilizes for $m \ge n+2$ just as $\pi_{m+n}(S^m)$.

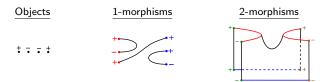
There are different approaches and proofs for this conjecture; see **PRAD**

Kürşat Sözer

Categories, Higher Categories, and Spaces

The *n*-category of cobordisms

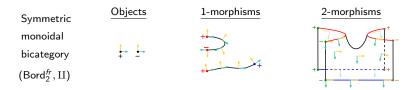
Recall the extended 2-dimensional bordism bicategory Bord₂



Extending $Bord_2$ inductively we obtain the *n*-category $Bord_n$ which has

- compact oriented 0-manifolds as objects,
- oriented cobordisms as 1-morphisms,
- oriented cobordisms between those as 2-morphisms,
- diffeomorphism classes of *n*-fold oriented cobordisms relative to boundary/corners as *n*-morphisms.

The Cobordism Hypothesis (Baez-Dolan)



Definition

An *n*-dimensional fully-extended framed topological field theory is a symmetric monoidal *n*-functor $Z : \text{Bord}_n^{fr} \to C$ where C is any symmetric monoidal *n*-category.

The Cobordism Hypothesis (Baez-Dolan)

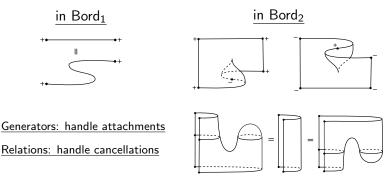
Each *n*-dimensional fully-extended framed topological field theory is determined by the image of framed point which is a fully-dualizable object.

 $\mathcal C\text{-valued}$ n-dim fully-extended framed TFTs \leftrightarrow Fully-dualizable objects in $\mathcal C$

Why not any object but a fully-dualizable one?

Consider a 1-dimensional framed (oriented) TFT:

In Bord₂ (higher) duality data replaces equalities with isomorphisms



Categories, Higher Categories, and Spaces

Lurie's reformulation

Extend the *n*-category $Bord_n^{fr}$ to an (∞, n) -category $Bord_n^{fr}$ by taking

- diffeomorphisms of *n*-manifolds with corners as (n + 1)-morphisms,
- isotopies of such diffeomorphisms as (n+2)-morphisms,
- isotopies of these isotopies as (n+3)-morphisms,

Definition (Lurie)

An *n*-dimensional fully-extended framed topological field theory is a symmetric monoidal (∞, n) -functor $Z : \text{Bord}_n^{fr} \to C$ where C is any symmetric monoidal (∞, n) -category.

The Cobordism Hypothesis (Lurie)

Let $\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{\operatorname{fr}}, \mathcal{C})$ be the (∞, n) -category of \mathcal{C} -valued fully-extended framed TFTs. Then there is a weak homotopy equivalence of spaces

 $\operatorname{\mathsf{Fun}}^{\otimes}(\operatorname{\mathsf{Bord}}^{\operatorname{\mathsf{fr}}}_n,\mathcal{C})\simeq (\mathcal{C}^{\operatorname{\mathsf{fd}}})^\sim.$

Structured Cobordism Hypothesis

A group homomorphims $\Gamma \to O(n)$ leads to a Γ -structured (∞, n) -bordism category Bord^{Γ}_n of manifolds with Γ -tangential structure.

Lurie's **F**-Structured Cobordism Hypothesis

There is a weak homotopy equivalence $\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{\Gamma}, \mathcal{C}) \simeq ((\mathcal{C}^{fd})^{\sim})^{h\Gamma}$ of spaces where $((\mathcal{C}^{fd})^{\sim})^{h\Gamma} = \operatorname{Hom}_{\Gamma}(E\Gamma, (\mathcal{C}^{fd})^{\sim})$ is the space of homotopy Γ -fixed points.

- $\Gamma = \{e\}$ corresponds to framed TFTs i.e. $Bord_n^{\{e\}} = Bord_n^{fr}$,
- $\Gamma = SO(n)$ corresponds to oriented TFTs i.e. Bord^{SO(n)}_n = Bord_n,

Verifying ($G \times SO(2)$)-structured Cobordism Hypothesis

- For any discrete group G, $\Gamma = G \times SO(2)$ corresponds to certain oriented 2-dimensional extended homotopy field theories,
- When k = k and char(k) = 0, comparing the classification of Alg²_k-valued E-HFT and Davidovich's homotopy (G × SO(2))-fixed point computations verifies this hypothesis for Alg²_k-valued (G × SO(2))-structured E-TFTs.

Verifying ($G \times SO(2)$)-structured Cobordism Hypothesis

- For any discrete group G, $\Gamma = G \times SO(2)$ corresponds to certain oriented 2-dimensional extended homotopy field theories,
- When k = k and char(k) = 0, comparing the classification of Alg²_k-valued E-HFT and Davidovich's homotopy (G × SO(2))-fixed point computations verifies this hypothesis for Alg²_k-valued (G × SO(2))-structured E-TFTs.

Thanks for taking the time to read!