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Abstract

In this survey, we give an overview of 3-dimensional topological quantum field theories (TQFTs) and the corresponding
quantum invariants of 3-manifolds. We recall the main algebraic concepts and constructions, such as modular and
spherical fusion categories, the Witten-Reshetikhin-Turaev and Turaev-Viro theories, and the relation between these
two TQFTs. We also briefly discuss generalizations of these constructions by providing a (non-exhaustive) review of
some recent works on 3-dimensional extended TQFTs, defect TQFTs, homotopy QFTs, and non-semisimple TQFTs.
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1. Introduction

Topological invariants are quantities associated with
a topological space that do not change under continuous
deformations of the space. One way to determine if two
spaces are topologically distinct from each other is to com-
pare the values of these invariants. Many topological in-
variants (such as (co)homology and homotopy theories)
have been introduced and thoroughly studied since the
XIXth century, allowing for a complete classification of
several families of topological objects. However, the study
of 3-dimensional manifolds using topological invariants re-
mains a very active area of research. In particular, a new
class of topological invariants of 3-manifolds, called quan-

tum invariants, emerged in the 1980s.
Quantum invariants originate from the idea of relating

the topology of smooth manifolds to the partition func-
tions of certain quantum field theories (QFTs). This idea
was first proposed by Schwarz in 1978, and elaborated
by Witten in 1988 who showed that the Chern-Simons

QFT can produce the Jones polynomial, a polynomial
invariant of knots and links in the 3-sphere. This was
the beginning of a fascinating interaction between mathe-
matics and theoretical physics. Witten also conjectured
that Chern-Simons theory can be used to define more
general invariants of 3-manifolds, which were later con-
structed rigorously by Reshetikhin and Turaev in 1989 us-
ing quantum groups. These quantum invariants, more gen-
erally defined using modular categories, are known as the
Witten-Reshetikhin-Turaev invariants and extend to 3-di-
mensional topological quantum field theories (TQFTs),
which are QFTs that depend only on the topology and
not on the geometry of the manifolds. A second important
family of quantum 3-manifold invariants comes from the
Turaev-Viro-Barrett-Westbury state sum construction on
triangulations of 3-manifolds, defined in the 1990s using
fusion categories. The quantum field theory motivating
these state sum invariants is the Ponzano-Regge model for
3-dimensional lattice gravity. Since then, quantum 3-man-
ifold invariants and their associated TQFTs have been ex-
tensively studied and successfully generalized in several
directions (including extended TQFTs, defect TQFTs, ho-
motopy QFTs, non-semisimple TQFTs).

This review is organized as follows. Section 2 is ded-
icated to algebraic preliminaries on the pivotal, ribbon,
fusion, and modular categories. Section 3 is devoted to
generalities on 3-dimensional TQFTs. In Section 4, we de-
fine the Witten-Reshetikhin-Turaev surgery invariants and
their TQFTs from modular categories. In Section 5, we de-
fine the state sum invariants and their TQFTs from spher-
ical fusion categories. Section 6 is devoted to the com-
parison of surgery and state sum approaches. Finally, in
Section 7, we end with a (non-exhaustive) review of some
more recent works on extended TQFTs, defect TQFTs,
homotopy QFTs, and non-semisimple TQFTs.
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2. Algebraic preliminaries

The definition of quantum invariants begins with fixing
suitable algebraic data, which are best described in terms
of monoidal categories.

2.1. Pivotal categories

Let C be a monoidal category (i.e., a category with an
associative tensor product and a unit object 1). A left

duality in C assigns to any object X of C an object X∗

together with two morphisms evX : X∗ ⊗ X → 1 and
coevX : 1 → X ⊗ X∗ in C (the left evaluation and co-
evaluation) such that

(idX ⊗ evX)(coevX ⊗ idX) = idX ,

(evX ⊗ idX∗)(idX∗ ⊗ coevX) = idX∗ .

The left dual of a morphism f : X → Y is then the mor-
phism f∗ : Y ∗ → X∗ defined by

f∗ = (evY ⊗ idX∗)(idY ∗ ⊗ f ⊗ idX∗)(idY ∗ ⊗ coevX).

We will often abstain (by abuse) from writing down the
following canonical isomorphisms

X∗∗ ∼= X, (X ⊗ Y )∗ ∼= Y ∗ ⊗X∗, 1∗ ∼= 1.

A pivotal structure in C is a left duality in C together
with a natural isomorphism φ = {φX : X → X∗∗}X∈C

which is monoidal in the sense that φX⊗Y = φX ⊗ φY .
The right evaluation and coevaluation associated with an
object X ∈ C are then defined by

ẽvX = evX∗(φX ⊗ idX∗) : X ⊗X∗ → 1,

c̃oevX = (idX∗ ⊗ φ−1
X )coevX∗ : 1→ X∗ ⊗X.

The (co)evaluation morphisms allow to define the left trace
and right trace of any endomorphism g : X → X as

trl(g) = evX(idX∗ ⊗ g)c̃oevX : 1→ 1,

trr(g) = ẽvX(g ⊗ idX∗)coevX : 1→ 1.

Both take values in the commutative monoid EndC(1) of
endomorphisms of the monoidal unit 1 and share a num-
ber of properties of the standard trace of matrices such as
trl(fh) = trl(hf) and trl(g) = trr(g

∗) = trl(g
∗∗) (and sim-

ilarly with l, r exchanged). The left and right dimensions

of an object X ∈ C are defined by

diml(X) = trl(idX) and dimr(X) = trr(idX).

Note that isomorphic objects have the same dimensions
and diml(1) = dimr(1) = id1.

A pivotal category is a monoidal category endowed with
a pivotal structure.

2.2. Penrose graphical calculus

We represent morphisms in a pivotal category C by
plane diagrams to be read from the bottom to the top.
Diagrams are made of oriented arcs colored by objects
of C and of boxes colored by morphisms of C. The arcs
connect the boxes and have no mutual intersections or self-
intersections. The identity idX of an objectX , a morphism
f : X → Y , the composition of two morphisms f : X → Y

and g : Y → Z, and the monoidal product of two mor-
phisms α : X → Y and β : U → V are represented as fol-
lows:

idX =
X

, f =
X

Y

f , gf =

X

Y

f

g

Z

, f ⊗ g =
X

α

Y

U

β

V

.

A box whose lower/upper side has no attached strands rep-
resents a morphism with source/target 1. If an arc colored
by X is oriented upward, then the corresponding object in
the source/target of morphisms is X∗. For example, idX∗

and a morphism f : X∗⊗Y → U⊗V ∗⊗W may be depicted
as:

idX∗ =
X

=
X∗

and f =
X

f

Y

U V W

.

The duality morphisms are depicted as

evX = X , coevX = X ,

ẽvX = X , c̃oevX = X .

The dual of a morphism f : X → Y can be depicted as

f∗ =
X

f

Y

=
X

f

Y

and the traces of an endomorphism g : X → X as

trl(g) =
X

g , trr(g) =
X

g .

Note that the morphisms represented by the diagrams are
invariant under isotopies of the diagrams in the plane keep-
ing fixed the bottom and top endpoints (see [JS, TVi4]).

2.3. Spherical categories

A spherical category is a pivotal category whose left
and right traces are equal, i.e., trl(g) = trr(g) for every
endomorphism g of an object. Then trl(g) and trr(g) are
denoted tr(g) and called the trace of g. In particular, the
left and right dimensions of an objectX are equal, denoted
dim(X), and called the dimension of X .

For spherical categories, the corresponding Penrose gra-
phical calculus has the following property: the morphisms
represented by diagrams are invariant under isotopies of
diagrams in the 2-sphere S2 = R2 ∪ {∞}, i.e., they are
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preserved under isotopies pushing arcs of the diagrams
across ∞. For example, the diagrams above representing
trl(g) and trr(g) are related by such an isotopy. Note that
the condition trl(g) = trr(g) for all g is therefore necessary
(and in fact sufficient) to ensure this property.

2.4. Braided categories

A braiding in a monoidal category B is a natural iso-
morphism c = {cX,Y : X ⊗ Y → Y ⊗X}X,Y∈B such that

cX,Y⊗Z = (idY ⊗ cX,Z)(cX,Y ⊗ idZ),

cX⊗Y,Z = (cX,Z ⊗ idY )(idX ⊗ cY,Z).

These conditions imply that cX,1 = c1,X = idX for any
object X . A monoidal category endowed with a braiding
is said to be braided.

Let B be a braided pivotal category. The braiding and
its inverse are depicted as

cX,Y =
X

X

Y

Y

and c−1
Y,X =

X

X

Y

Y

.

The family θ = {θX : X → X}X∈B, defined by

θX =
X

X

= (idX ⊗ ẽvX)(cX,X ⊗ idX∗)(idX ⊗ coevX),

is called twist of B. It is a natural isomorphism and satis-
fies θ1 = id1 and θX⊗Y = (θX ⊗ θY )cY,XcX,Y .

2.5. Ribbon categories

A ribbon category is a braided pivotal category B whose
twist is self-dual, i.e., (θX)∗ = θX∗ for all objects X of B.
This condition is equivalent to the equality of morphisms

X

X

=
X

X

.

The inverse of the twist is then computed by

θ−1
X =

X

X

=
X

X

.

Ribbon categories are spherical and nicely fit into the
theory of knots and links in S3. A link L ⊂ S3 is a closed
one-dimensional submanifold of S3. (A manifold is closed
if it is compact and has no boundary.) A link is oriented

(resp. framed) if all its components are oriented (resp. pro-
vided with a homotopy class of nonsingular normal vector
fields). Any ribbon category B gives rise to an invariant
of B-colored framed oriented links in S3. Here, a link is
B-colored if each of its components is endowed with an
object of B (called the color of this component). Namely,
every B-colored framed oriented link L ⊂ S3 determines
an endomorphism of the unit object

〈L〉B ∈ EndB(1)

which turns out to be an isotopy invariant of L. To com-
pute 〈L〉B, present L by a plane diagram with only double
transversal crossings such that the framing of L is orthog-
onal to the plane, and then apply the Penrose graphical
calculus to this B-colored diagram (using the braiding and
its inverse for the positive and negative crossings). The
axioms of a ribbon category imply that 〈L〉B does not de-
pend on the chosen plane diagram for L. For example,

〈OX〉B = dim(X)

for the trivial knot OX with zero framing and colorX ∈ B.
Further constructions need the notion of a tangle. An

(oriented) tangle is a compact (oriented) one-dimensional
submanifold of R2× [0, 1] with endpoints on R×0×{0, 1}.
Near each of its endpoints, an oriented tangle T is directed
either down or up, and thus acquires a sign ±1. Then
one can view T as a morphism from the sequence of ±1’s
associated with its bottom ends to the sequence of ±1’s
associated with its top ends. Tangles can be composed by
putting one on top of the other. This defines a monoidal
category of tangles T whose objects are finite sequences of
±1’s and whose morphisms are isotopy classes of framed
oriented tangles. Given a ribbon category B, we can con-
sider B-colored tangles, that is, (framed oriented) tangles
whose components are labeled with objects of B. They
form a category TB. Links appear here as tangles without
endpoints, that is, as morphisms ∅ → ∅. The link invariant
〈L〉B generalizes to a functor 〈·〉B : TB → B, see [Tu1].

2.6. Fusion categories

Let k be a field. A monoidal category is k-linear if
its Hom sets are k-vector spaces, and the composition and
monoidal product of morphisms are k-bilinear. Such a
category is additive if any finite family of objects has a
direct sum.

An object S of a k-linear monoidal category C is simple

if the k-vector space EndC(S) is one dimensional. Then the
map k → EndC(S), k 7→ k idS is a k-algebra isomorphism.
It is used to identify EndC(S) = k.

A fusion category (over k) is an additive k-linear piv-
otal category C such that each object of C is a (finite)
direct sum of simple objects, HomC(i, j) = 0 for any non-
isomorphic simple objects i, j of C, the unit object 1 is
simple, and the set of isomorphism classes of simple ob-
jects of C is finite. These conditions imply that all the
Hom spaces in C are finite dimensional k-vector spaces.

In a fusion category, the left and right dimensions of
any simple object of C are nonzero in EndC(1) = k. Also, a
fusion category is spherical if and only if any simple object
has equal left and right dimensions.

The dimension of a fusion category C is

dim(C) =
∑

i∈I

diml(i) dimr(i) ∈ k,

where I is any representative set of simple objects of C
(meaning that 1 ∈ I and every simple object of C is iso-
morphic to a unique element of I). By [ENO], dim(C) 6= 0
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when k is an algebraically closed field of characteristic zero.
For spherical C, we have dim(C) =

∑
i∈I dim(i)2.

A standard example of a spherical fusion category with
nonzero dimension is the category of finite dimensional
representations (over k) of a finite group whose order is
relatively prime to the characteristic of k. More interesting
examples of spherical fusion categories are derived from
the theory of subfactors, see [EK, KS2].

2.7. 6j-symbols

The 6j-symbols were first introduced by the physi-
cists Wigner and Racah in the theory of representations
of SU2(C). The 6j-symbols have been extensively used in
the theory of angular momentum in quantum mechanics
and in the Ponzano-Regge approach to quantum gravity
in dimension three. Also, the 6j-symbols play a special
role in 3-dimensional state sum TQFTs (see Section 5).
We will need two versions of the 6j-symbols (among the
26 = 64 versions, each of them corresponding to a choice
of orientation for the edges of a tetrahedron, see [TVi4]).

Let C be a spherical fusion category and I be a repre-
sentative set of simple objects of C. For i, j, k ∈ I, consider
the multiplicity spaces

Hk
i,j = HomC(i⊗ j, k) and H

i,j
k = HomC(k, i⊗ j).

The positive 6j-symbol associated with i, j, k, ℓ,m, n ∈ I

is the k-linear form
{
i j k

ℓ m n

}

+

: Hk,ℓ
m ⊗Hn

j,ℓ ⊗Hi,m
n ⊗H

j
i,k → k

which maps α⊗ β ⊗ γ ⊗ δ to

tr
(
β(δ ⊗ idℓ)(idi ⊗ α)γ

)
=

α

β

γ

δ

i

j

k

ℓ

m

n .

Similarly, the negative 6j-symbol is the k-linear form

{
i j k

ℓ m n

}

−

: Hm
k,ℓ ⊗Hj,ℓ

n ⊗Hn
i,m ⊗H

i,k
j → k

defined by α⊗ β ⊗ γ ⊗ δ 7→ tr
(
γ(idi ⊗ α)(δ ⊗ idℓ)β

)
.

Note that if the multiplicity spaces are at most one
dimensional and have canonical basis elements (as in the
SU2(C) case), then the 6j-symbols can be interpreted as
numbers.

The 6j-symbols satisfy beautiful algebraic identities in-
cluding the orthonormality relation and the Biedenharn-
Elliott identity (see [TVi4, Appendix F]).

2.8. Modular categories

Let B be a ribbon fusion category and I be a represen-
tative set of simple objects of B. The S-matrix of B is the
matrix S = [Si,j ]i,j∈I , where

Si,j = tr(cj,ici,j) =

〈

i j

〉

B

∈ EndC(1) = k.

Note that for any i ∈ I, the twist θi : i → i is multiplication
by an invertible scalar vi ∈ k. We set

∆± =
∑

i∈I

v±1
i dim(i)2 ∈ k.

A modular category (over k) is a ribbon fusion cate-
gory (over k) such that its S-matrix is invertible (over k).
If B is a modular category, then its dimension dim(B) and
the scalars ∆± are nonzero and satisfy ∆+∆− = dim(B),
see [Tu1]. We say that a modular category B is anomaly

free if ∆+ = ∆−.
Examples of modular categories are derived from quan-

tum groups. The universal enveloping algebra Ug of a (fi-
nite dimensional complex) simple Lie algebra g admits a
deformation Uqg, which is a quasitriangular Hopf algebra.
The representation category Rep(Uqg) is C-linear and rib-
bon. For generic q ∈ C, this category is semisimple. (The
irreducible representations of g can be deformed to irre-
ducible representations of Uqg.) For q an appropriate root
of unity, a certain subquotient of Rep(Uqg) is a modular
category with ground field k = C. For g = sl2(C), this
result was pointed out by Reshetikhin and Turaev; the
general case involves the theory of tilting modules.

Given a modular category B, the invariant 〈·〉B of B-col-
ored framed links and tangles extends by linearity to the
case where colors are finite linear combinations of objects
of B with coefficients in k. In particular, the linear com-
bination

Ω =
∑

i∈I

dim(i) i,

called the Kirby color, has the following sliding property:

Ω

X

= Ω

X

for any object X of B (meaning that the two tangles yield
the same morphism X → X under 〈·〉B). Here, the dashed
line represents an arc on the closed component colored
by Ω. This arc can be knotted or linked to other compo-
nents of the tangle (not shown in the figure). Also

〈O±
Ω 〉B = ∆±

for the trivial knot O±
Ω with framing ±1 and color Ω.
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3. Three dimensional TQFTs

Inspired by the works of Witten [Wi] and Segal [Se],
Atiyah axiomatized in [At] the notion of a topological
quantum field theory (TQFT). A 3-dimensional TQFT Z

(over a field k) assigns to every oriented closed surface Σ
a finite dimensional k-vector space Z(Σ) and assigns to
every cobordism (M,Σ,Σ′) a k-linear homomorphism

Z(M) = Z(M,Σ,Σ′) : Z(Σ) → Z(Σ′).

Here, a cobordism (M,Σ,Σ′) between two oriented closed
surfaces Σ and Σ′ is an oriented compact 3-manifold M

such that ∂M = (−Σ)⊔Σ′, where the boundary is oriented
using the first outward pointing convention and the minus
sign indicates the orientation reversal. A TQFT has to
satisfy axioms which can be expressed by saying that

Z : Cob3 → Vectk

is a symmetric monoidal functor. Here Vectk is the cat-
egory of k-vector spaces and Cob3 is the category whose
objects are oriented closed surfaces, whose morphisms are
diffeomorphism classes of cobordisms, and whose monoidal
structure is given by the disjoint union. In particular
Z(∅) ∼= k (where ∅ is the empty surface) and

Z(Σ ⊔Σ′) ∼= Z(Σ)⊗ Z(Σ′)

for any oriented closed surfaces Σ,Σ′ (and similarly for
cobordisms). Homeomorphisms of surfaces should induce
isomorphisms of the corresponding vector spaces compati-
ble with the action of cobordisms. Every oriented compact
3-manifold M is a cobordism between ∅ and ∂M so that Z
yields a “vacuum” vector

Z(M) ∈ Homk(Z(∅), Z(∂M)) = Z(∂M).

If ∂M = ∅, then this gives a numerical invariant Z(M) ∈
Endk

(
Z(∅)

)
= k.

An isomorphism of 3-dimensional TQFTs Z1 → Z2 is a
natural monoidal isomorphism of functors. In particular, if
two TQFTs Z1, Z2 are isomorphic, then Z1(M) = Z2(M)
for any oriented closed 3-manifold M .

Interestingly, TQFTs are often defined for surfaces and
3-cobordisms with additional structure. The surfaces Σ
are normally endowed with Lagrangians, that is, with max-
imal isotropic subspaces in H1(Σ;R). For 3-cobordisms,
several additional structures are considered in the litera-
ture: for example, 2-framings, p1-structures, and numeri-
cal weights. All these choices are equivalent. The TQFTs
requiring such additional structures are said to be projec-

tive since they provide projective linear representations of
the mapping class groups of surfaces, see [Tu1].

4. The surgery approach

The Witten-Reshetikhin-Turaev invariants of oriented
closed 3-manifolds are defined from modular categories
and extend to 3-dimensional TQFTs. Their construction
is based on the surgery presentation of 3-manifolds. In
this section, we fix a modular category B over a field k.

4.1. Surgery on framed links

Given an embedded solid torus g : S1 × D2 →֒ S3,
where D2 is a 2-disk and S1 = ∂D2, a 3-manifold can be
built as follows. Remove from S3 the interior of g(S1×D2)
and glue back the solid torus D2×S1 along g|S1×S1 . This
process is known as “surgery”. The resulting 3-manifold
depends only on the isotopy class of the framed knot rep-
resented by g. More generally, surgery on a framed link
L = ∪m

i=1Li in S3 with m components yields an oriented
closed 3-manifold ML.

A theorem of Lickorish and Wallace asserts that any
closed connected oriented 3-manifold is homeomorphic to
ML for some L. Kirby proved that two framed links give
rise to homeomorphic 3-manifolds if and only if these links
are related by isotopy and a finite sequence of geometric
transformations called Kirby moves. There are two Kirby
moves: adjoining a distant unknot O± with framing ±1
and sliding a link component over another one (as in the
figure of the sliding property in Section 2.8).

4.2. The WRT invariants of closed 3-manifolds

Let L = ∪m
i=1Li be a framed link in S3. Its linking

matrix (bi,j)1≤i,j≤m as coefficients defined as follows: for
i 6= j, bi,j is the linking number of Li with Lj, and bi,i
is the framing number of Li. Denote by e+ (resp. e−)
the number of positive (resp. negative) eigenvalues of this
matrix. The sliding property of modular categories implies
the following theorem. In its statement, a framed knot K
B-colored by the Kirby color Ω of B is denoted by K(Ω).

Theorem 4.1. The expression

WRTB(ML) = ∆
−e+
+ ∆

−e−
−

〈
L1(Ω) ∪ · · · ∪ Lm(Ω)

〉
B
∈ k

is invariant under the Kirby moves on L. This expres-

sion yields, therefore, a well-defined topological invariant

WRTB of closed connected oriented 3-manifolds.

Theorem 4.1 was first proved in [RT] (see also [Tu1]). In
particular, the invariance under the second Kirby move
follows from the sliding property of the Kirby color of a
modular category (see Section 2.8). Several competing
normalizations of WRTB exist in the literature. Here, the
normalization used is such that

WRTB(S
3) = 1 and WRTB(S

1 × S2) = dim(B).

The invariantWRTB extends to 3-manifolds with a framed
oriented B-colored link K inside (Wilson loops) by setting

WRTB(ML,K) = ∆
−e+
+ ∆

−e−
−

〈
L1(Ω) ∪ · · · ∪ Lm(Ω) ∪K

〉
.

4.3. The surgery TQFT

The Witten-Reshetikhin-Turaev invariants extend to a
projective 3-dimensional TQFT denoted τB and called the
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surgery TQFT. It depends on the choice of a square root D
of dim(B). The coend of the category B is the object

C =
⊕

i∈I

i∗ ⊗ i,

where I is a representative set I of simple objects of B.
For a connected oriented closed surface Σ of genus g,

τB(Σ) = HomB(1, C⊗g).

The dimension of this vector space enters the Verlinde for-
mula

dimk(τB(Σ)) 1k = dim(B)g−1
∑

i∈I

dim(i)2−2g

where 1k ∈ k is the unit of the field k. If char(k) = 0,
then this formula computes dimk(ZB(Σ)). For a closed
connected oriented 3-manifold M with numerical weight
zero,

τB(M) = D−b1(M)−1WRTB(M),

where b1(M) is the first Betti number of M . In particular,

τB(S
3) = D−1 and τB(S

1 × S2) = 1.

The two dimensional part of τB determines a “modular
functor” in the sense of Segal, Moore, and Seiberg.

The TQFT τB extends to a vaster class of surfaces
and cobordisms. Surfaces may be enriched with a finite
set of marked points, each colored with an object of B
and endowed with a tangent direction. Cobordisms may
be enriched with ribbon (or fat) graphs whose edges are
colored with objects of B and whose vertices are labeled
with appropriate intertwiners. The resulting TQFT, called
the surgery graph TQFT and also denoted τB, is nonde-
generate in the sense that, for any surface Σ, the vector
space τB(Σ) is spanned by the vacuum vectors determined
by all M with ∂M = Σ. A detailed construction of τB is
given in [Tu1].

If B is anomaly free and D = ∆±, then τB is a genuine
3-dimensional TQFT (not only a projective one).

5. The state sum approach

Another approach to three dimensional TQFTs is based
on the theory of 6j-symbols and state sums on triangula-
tions of 3-manifolds. This approach, introduced by Turaev
and Viro in 1992 and refined by Barrett-Westbury in 1995,
is a quantum deformation of the Ponzano-Regge model for
three dimensional lattice gravity. The state sum quantum
invariants of closed 3-manifolds are defined from spherical
fusion categories with nonzero dimensions and extend to
3-dimensional TQFTs.

In this section, we fix a spherical fusion category C
(over a field k) with nonzero dimension and let I be a
representative set of simple objects of C.

5.1. Triangulations of 3-manifolds

A tetrahedron is the convex hull of four affinely inde-
pendent points in some affine space. It has 4 triangular
faces called triangles, 6 edges, and 4 vertices:

.

A triangulation of a 3-manifold M is a decomposition
of M into finitely many tetrahedra such that the triangles
of the tetrahedra are identified with each other pairwise,
and the interiors of the tetrahedra remain disjoint.

Moise proved that any compact 3-manifold has a tri-
angulation. Pachner proved that two triangulations of a
3-manifold are related by a finite sequence of ambient iso-
topies of triangulations, 2-3 moves, 1-4 moves, and their
inverses. The 2-3 move is performed on two different tetra-
hedra meeting in a triangle. It deletes this triangle by in-
troducing a new edge connecting the opposite corners of
the tetrahedra (creating three new tetrahedra):

.

The 1-4 move introduces a vertex inside a tetrahedron and
connects it to the four vertices of the tetrahedron with four
edges (creating four new tetrahedra):

.

5.2. State sum invariants of closed 3-manifolds

Let M be an oriented closed 3-manifold. Pick a trian-
gulation of M and a total order on the set of vertices of
the triangulation. A state is a map from the set of edges
of the triangulation to I. Note that the number of states
is finite since both the set of edges and I are finite. For a
given state s, we set

dim(s) =
∏

e

dim(s(e)) ∈ k

where e runs over all edges of the triangulation. Next, we
define a scalar |s| ∈ k as follows.

For any triangle t of the triangulation, consider the
k-vector spaces

H+
s,t = HomC

(
s(02), s(01)⊗ s(12)

)
,

H−
s,t = HomC

(
s(01)⊗ s(12), s(02)

)
,

where 0 < 1 < 2 are the vertices of t and (ij) denotes the
edge connecting the vertices i and j. Since the category C
is fusion, the pairing α⊗ β ∈ H−

s,t ⊗H+
s,t 7→ tr(αβ) ∈ k is
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non-degenerate. Denote by ∗s,t the image of 1k under its
inverse copairing k → H+

s,t ⊗H−
s,t. Let

Hs =
⊗

t

H+
s,t ⊗H−

s,t

be the unordered tensor product of H+
s,t and H−

s,t over all
triangles t of the triangulation, and set

∗s =
⊗

t

∗s,t ∈ Hs.

For any tetrahedron ∆ of the triangulation, set ε∆ = +
if the orientation of ∆ induced by the order of its ver-
tices coincides with that induced by M , and set ε∆ = −
otherwise. Moreover, given any triangle t at the boundary
of ∆, set ε(t,∆) = + if the orientation of t induced by the
order of its vertices coincides with the boundary orienta-
tion of t ⊂ ∂∆ induced by the orientation of M restricted
to ∆, and set ε(t,∆) = − otherwise. Section 2.7 yields the
6j-symbol

|∆|s =

{
s(01) s(02) s(12)
s(23) s(13) s(03)

}

ε∆

:
⊗

t⊂∂∆

H
ε(t,∆)
s,t → k

where t runs over all triangles in the boundary of ∆.
Since M is closed, each triangle t of the triangulation

is adjacent to two tetrahedra ∆1 and ∆2 of the trian-
gulation and ε(t,∆2) = −ε(t,∆1). Then the unordered
tensor product over all tetrahedra ∆ of their associated
6j-symbols is a k-linear form

Vs =
⊗

∆

|∆|s : Hs → k.

Evaluating Vs on ∗s yields |s| = Vs(∗s) ∈ k. Finally, set

|M |C = dim(C)−υ
∑

s

dim(s) |s| ∈ k,

where s runs over all states of the triangulation ofM and υ

is the number of vertices of the triangulation.

Theorem 5.1. |M |C is a topological invariant of M in-

dependent of the choice of the triangulation and I.

For example, one computes that

|S3|C = dim(C)−1 and |S1 × S2|C = 1.

When C is the fusion category derived from the repre-
sentations of the quantum group Uq(sl2C) with q an appro-
priate root of unity (see Section 2.8), then |M |C is equal
to the original Turaev-Viro invariant [TV] of M .

The proof of Theorem 5.1 consists in particular of veri-
fying the invariance of the state sum under the application
of Pachner moves on the triangulation. This comes down
to the orthonormality relation and the Biedenharn-Elliott
identity for 6j-symbols, see [BW].

The state sum may be more generally defined on skele-
tons of 3-manifolds (including triangulations, their dual
cellular decompositions, and spines), see [TVi4].

5.3. The state sum TQFT

If M is an oriented compact 3-manifold with nonempty
boundary, then the algorithm described in the previous
section applied to a state s of a triangulation of M yields
not a scalar but a k-linear form

|s| : H∂
s =

⊗

t

H
ε(t,∆t)
s,t → k

where t runs over all triangles in the boundary ofM and ∆t

denotes the unique tetrahedron adjacent to such a trian-
gle t. Consider the state sum

|M |◦ = dim(C)−υ
∑

s

dim(s) |s|

where s runs over all states and υ is the number of vertices
in the interior of M . Then the assignment M 7→ |M |◦ be-
haves well with the gluing of 3-manifolds along boundary
components. Consequently, there is a standard procedure
(see [TVi4]) to transform it into a (genuine) TQFT

| · |C : Cob3 → Vectk.

For example, the vector space associated to the 2-sphere
is |S2|C ∼= k.

6. Comparison of the two approaches

The comparison of the surgery and state sum appro-
aches to 3-dimensional TQFTs is based on the notion of
center of a monoidal category due to Joyal, Street, and
Drinfeld.

6.1. Categorical centers

The center of a monoidal category C is the braided
category Z(C) defined as follows. The objects of Z(C) are
half braidings of C, that is, pairs (A, σ), where A is an
object of C and σ = {σX : A ⊗ X → X ⊗ A}X∈C is a
natural isomorphism such that

σX⊗Y = (idX ⊗ σY )(σX ⊗ idY ).

A morphism (A, σ) → (A′, σ′) in Z(C) is a morphism
f : A → A′ in C such that (idX⊗f)σX = σ′

X(f⊗idX) for all
X ∈ C. The unit object of Z(C) is 1Z(C) = (1, {idX}X∈C)
and the monoidal product is

(A, σ) ⊗ (B, ρ) =
(
A⊗B, (σ ⊗ idB)(idA ⊗ ρ)

)
.

The braiding c in Z(C) is defined by

c(A,σ),(B,ρ) = σB : (A, σ) ⊗ (B, ρ) → (B, ρ)⊗ (A, σ).

If C is a k-linear category, then so is Z(C). If C is
pivotal, then so is Z(C) with (A, σ)∗ = (A∗, σ†), where

σ
†
X =

A

A

X

X

σX∗ : A∗ ⊗X → X ⊗A∗,

and (co)evaluations morphisms and pivotal structure in-
herited from C. The (left and right) traces of morphisms
and dimensions of objects in Z(C) are the same as in C.
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6.2. The comparison

The first connections between the surgery and state
sum constructions were established by Walker [Wa] and
Turaev [Tu1]: if B is a modular category, then it is also a
spherical category with nonzero dimension and the surgery
and state sum invariants are related by:

|M |B = τB(M) τB(−M) (1)

for every oriented closed 3-manifold M , where −M is the
3-manifoldM with opposite orientation. In particular, if B
is unitary over k = C (meaning that the Hom spaces in B
are equipped with a conjugation compatible with the piv-
otal structure and the braiding), then τB(−M) = τB(M)
and so |M |B = |τB(M)|2 ∈ R+.

But in general, a spherical category need not be braided
and so cannot be used as input to define the Witten-
Reshetikhin-Turaev invariant. However, let C be a spheri-
cal fusion category over an algebraically closed field k such
that dim(C) 6= 0. A fundamental theorem of Müger [Mü]
asserts that the center Z(C) of C is an anomaly free mod-
ular category with ∆+ = ∆− = dim(C). In particular

dim
(
Z(C)

)
= ∆+∆− = dim(C)2.

Consequently, such a category C gives rise to two (gen-
uine) 3-dimensional TQFTs: the state sum TQFT | · |C
and the surgery TQFT τZ(C) associated with the square
root dim(C) of dim(Z(C)).

Theorem 6.1. The TQFTs | · |C and τZ(C) are isomor-

phic. In particular, for any oriented closed 3-manifold M ,

|M |C = τZ(C)(M), (2)

and for any oriented closed surface Σ,

|Σ|C ∼= τZ(C)(Σ). (3)

Theorem 6.1 was first proved in [TVi1] (see also [TVi4]).
In the case where the characteristic of k is equal to zero,
Theorem 6.1 was independently proved in [Ba].

Theorem 6.1 relates through the categorical center two
categorical approaches to invariants of 3-manifolds. This
relationship sheds new light on both approaches and shows,
in particular, that the surgery approach is more general
than the state sum approach. Formula (3) gives

|Σ|C ∼= HomZ(C)

(
1Z(C),C

⊗g
)

where C is the coend of Z(C) and g is the genus of Σ.
Note that C = (A, σ) can be computed explicitly using the
category C, see [TVi4]. In particular,

A =
⊕

i,j∈I

i∗ ⊗ j∗ ⊗ i⊗ j.

The formula (2) was previously known to be true in
several special cases: when C is the category of representa-
tions of a finite group, when C is the category of bimodules

associated with a subfactor [KSW], and when C is modular
[Tu1, Wa]. In the latter case, Formula (1) can indeed be
derived from Formula (2): if B is a modular category, then
its center Z(B) is braided equivalent to the Deligne tensor
product B ⊠ B (where B is the mirror of B) and therefore
Formula (2) gives

|M |B = τB⊠B(M) = τB(M) τB(M) = τB(M) τB(−M).

7. Generalizations and perspectives

Three dimensional TQFTs have several interesting gen-
eralizations including extended TQFTs, defect TQFTs,
homotopy QFTs, and non-semisimple TQFTs. Extended
TQFTs are motivated by applications of higher categorical
ideas to the functorial (cut-paste) nature of TQFTs while
defect TQFTs incorporate the presence of defects in the
underlying manifolds, which originate from certain con-
cepts in physics such as domain walls, boundaries, and in-
terfaces. On the other hand, homotopy QFTs can be seen
as TQFTs for manifolds endowed with an extra structure
encoded by a homotopy class of maps to a target space
(viewed as the classifying space of the structure). Non-
semisimple theories weaken the semisimplicity condition
on the underlying fusion categories and overcome certain
limitations on the quantum invariants.

In the following subsections, we shortly discuss these
generalizations and review some recent works in these fields.

7.1. Extended TQFTs

Recall that a 3-dimensional TQFT provides a numeri-
cal invariant of oriented closed 3-manifolds. This invariant
can be computed by cutting the 3-manifold along codimen-
sion one submanifolds into 3-manifolds with boundary, and
then by composing the corresponding linear maps. How-
ever, these maps as well as the vector spaces assigned to
the boundary surfaces, are not always easy to determine.
This leads to wanting to cut the 3-manifold along higher
codimensional submanifolds. This motivates the definition
and study of extended TQFTs.

While a 3-dimensional TQFT assigns algebraic invari-
ants to closed surfaces and compact 3-manifolds, a once
extended 3-dimensional TQFT should assign algebraic in-
variants to closed 1-manifolds, 2-manifolds, and 3-mani-
folds with corners. More precisely, there is a symmetric
monoidal 2-category Bord3,2,1 which extends the category
Cob3 and whose objects are oriented closed 1-manifolds,
1-morphisms are oriented 2-dimensional cobordisms be-
tween them, and 2-morphisms are diffeomorphism classes
of oriented cobordisms between 1-morphisms (such cobor-
disms are oriented compact 3-manifolds with codimen-
sion 2 corners). A once extended 3-dimensional TQFT
is then a symmetric monoidal 2-functor from Bord3,2,1 to
some algebraic symmetric monoidal 2-category. For exam-
ple, the Witten-Reshetikhin-Turaev surgery graph TQFT
(see Section 4.3) can be seen as a once extended 3-dimen-
sional TQFT (with anomaly).
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A classification of once extended 3-dimensional TQFTs
with values in the symmetric monoidal 2-category of Cau-
chy complete linear categories (over an algebraically closed
field) is given in [BDSPV]. This classification states a one-
to-one correspondence between equivalence classes of such
extended TQFTs and equivalence classes of modular ten-
sor categories whose anomaly factor is 1. This correspon-
dence takes an extended TQFT to its value on the circle.

One can further try to extend a once extended 3-dimen-
sional TQFT to three codimensional submanifolds, that is,
to points. Such an extended TQFT is called fully extended

and is formally defined as a symmetric monoidal 3-functor
from the 3-category Bord3,2,1,0 to some algebraic symmet-
ric monoidal 3-category. The cobordism hypothesis, con-
jectured by Baez-Dolan [BD] and proven by Lurie [Lu]
and recently by Ayala-Francis [AF], states that a fully ex-
tended framed TQFT is determined by its value on a point,
and any fully dualizable object of the target category gives
rise to a fully extended framed TQFT which assigns that
object to a point, see [Fr, DSS]. Moreover, Lurie [Lu] gen-
eralized the cobordism hypothesis to arbitrary tangential
structures on manifolds by using homotopy fixed points.
In this formulation, fully extended oriented 3-dimensional
TQFTs are classified by homotopy SO(3)-fixed points of
the target 3-category.

A natural candidate for the target symmetric monoidal
3-category is the 3-category TC whose objects are finite
rigid monoidal linear categories, 1-morphisms are finite
bimodule categories, 2-morphisms are bimodule functors,
and 3-morphisms are bimodule natural transformations.
In this case, fully dualizable objects and homotopy SO(3)-
fixed points in TC are computed in [DSS] as fusion cat-
egories of nonzero dimension and spherical fusion cate-
gories, respectively. Given a spherical fusion category C of
nonzero dimension, the associated fully extended oriented
3-dimensional TQFT conjecturally extends the state sum
TQFT | · |C associated with C (see Section 5).

7.2. TQFTs with defects

Defect TQFTs generalize TQFTs by allowing the pres-
ence of defects, which are lower dimensional submanifolds
of the cobordisms that can carry nontrivial topological or
quantum information. More precisely, a 3-dimensional de-

fect TQFT is a symmetric monoidal functor

Z : Cobdef3 (D) → Vectk,

where Cobdef3 (D) is the category of oriented closed sur-
faces and oriented cobordisms endowed with a stratifi-
cation by submanifolds labeled with elements of a fixed
labeling data D. The labelings of defect submanifolds
should satisfy (higher categorical) algebraic relations re-
flecting their adjacency. In particular, it is shown in [CMS]
that any 3-dimensional defect TQFT yields a k-linear Gray
3-category with duals.

Concrete examples of 3-dimensional defect TQFTs gen-
eralizing the surgery and state sum TQFTs have been de-

veloped in various papers, notably [KS1, FSV, KK, CRS,
Me].

7.3. Homotopy QFTs

Roughly, HQFTs are TQFTs for manifolds endowed
with a map to a fixed target space. More precisely, let X
be a connected topological space. Following Turaev [Tu2],
a 3-dimensional homotopy quantum field theory (HQFT)
with target X is a symmetric monoidal functor

Z : XCob3 → Vectk.

Here XCob3 is the symmetric monoidal category whose
objects are oriented closed surfaces endowed with a map
to X and whose morphisms are diffeomorphism classes of
oriented cobordisms equipped with a homotopy class of
maps to X restricting to the given maps on their bound-
ary. In particular, a 3-dimensional HQFT with target X
produces a scalar homotopy invariant of maps from ori-
ented closed 3-manifolds to X . For example, any third co-
homology class θ ∈ H3(X, k∗) gives rise to a 3-dimensional
HQFT with target X , called cohomological HQFT, whose
associated homotopy invariant of a map f : M → X is the
evaluation of the pullback class f∗(θ) ∈ H3(M, k∗) with
the fundamental class [M ] ∈ H3(M,Z).

If X is a connected homotopy 0-type (that is, a con-
tractible space), then any HQFT with target X is equiva-
lent to a TQFT.

If X is a connected homotopy 1-type, then X is a
K(G, 1) space where G is the fundamental group of X . In
this case, the surgery and state sum TQFTs have been gen-
eralized in [TVi2, TVi3] to 3-dimensional HQFTs with tar-
getX . The relevant algebraic structures for their construc-
tion are modular and spherical fusion categories which are
G-graded (meaning that objects have a degree in G and
this degree is multiplicative with respect to the monoidal
product). Generalizing Theorem 6.1, it is shown in [TVi5]
that the surgery and state sum HQFTs are related via the
graded center of graded fusion categories. Also, the orb-
ifold construction [SW] associates a TQFT to each HQFT
with target X . For example, the Dijkgraaf-Witten TQFT
is the orbifoldization of a cohomological HQFT.

If X is a connected homotopy 2-type, then X may be
encoded by a crossed module χ : E → H which is a cer-
tain group homomorphism with π1(X) = coker(χ) and
π2(X) = ker(χ). In this case, the state sum TQFT has
been generalized in [SV] to a 3-dimensional HQFT with
target X . For this purpose, the relevant algebraic inputs
are χ-graded spherical fusion categories. These are a class
of monoidal categories in which not only the objects have
a degree (in H) but also the morphisms have a degree
(in E), and the compatibility of these degrees is governed
by the crossed module χ. For example, the cohomological
HQFTs associated with X are particular instances of state
sum HQFTs with target X .
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7.4. Non-semisimple quantum invariants

Hennings [He] was the first to build a non-semisimple
quantum invariant of closed 3-manifolds by using a finite
dimensional ribbon Hopf algebra. When the Hopf alge-
bra is semisimple, this invariant agrees with the Witten-
Reshetikhin-Turaev invariant derived from the category of
representations of the Hopf algebra. Lyubashenko [Ly] ex-
tended Hennings’ construction by using ribbon finite ten-
sor categories. Note that the Lyubashenko invariant does
not form a TQFT in the usual sense because it does not
behave well under the disjoint union operation (in particu-
lar, when the category is not semisimple, it vanishes on all
closed 3-manifolds with positive first Betti number). How-
ever, the Lyubashenko invariant forms an extended TQFT
in a weaker sense (by considering cobordisms with corners
between connected surfaces and using the connected sum
as monoidal product), see [KL].

To construct genuine TQFTs from non-semisimple mod-
ular categories, a useful tool is that of a modified trace in-
troduced in [GPV]. Such traces have been used in [CGP]
to define a non-semisimple version of the surgery quantum
invariants. The CGP invariants are actually part of an ex-
tended TQFT for admissible cobordisms decorated with
colored ribbon graphs and cohomology classes, see [DR].

Another instance of a non-semisimple invariant is the
Kuperberg invariant [Ku] of framed 3-manifolds defined
from any finite dimensional Hopf algebra by using Hee-
gaard splittings (i.e., decompositions of 3-manifolds into
two handlebodies). If the Hopf algebra is semisimple, then
the Kuperberg invariant is an invariant of closed 3-mani-
folds and is equal (by Theorem 6.1) to the Hennings invari-
ant derived from the Drinfeld double of the Hopf algebra.
This result is extended to non-semisimple Hopf algebras
in [CC].

A non-semisimple generalization of the Turaev-Viro
state sum invariant of closed 3-manifolds is given in [CGPT]
using a spherical finite tensor category as algebraic input.
It is extended to a (non-compact) 3-dimensional TQFT
in [CGPV] via Juhász’s presentation [Ju] of the category
Cob3 by generators and relations.
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