SCALING INVARIANT SOBOLEV-LORENTZ CAPACITY ON R"

SERBAN COSTEA

ABSTRACT. We develop a capacity theory based on the definition of Sobolev
functions on R™ with respect to the Lorentz norm. Basic properties of capac-
ity, including monotonicity, finite subadditivity and convergence results are
included. We also provide sharp estimates for the capacity of balls. Sobolev-
Lorentz capacity and Hausdorff measures are related.

1. INTRODUCTION

We recall that for 1 < p < oo and 0 < XA < n, the Morrey space U’)‘(R”) is

defined to be the linear space of measurable functions u € L, .(R™) such that

1/p
|[ul| co.r(mny = sup sup (TA/ |U(y)|pdy> < oo0.
zeR" r>0 B(z,r)

In other words, the fractional maximal function

1/p
— n—>XA 1 P
M, _\u(x) sup (7“ B Jsen lu(y) dy)
is bounded in R™. In particular, L*°(R") = L"(R"). We refer to [Gia83, p. 65]
for more information about Morrey spaces and their use in the theory of partial
differential equations. One notices that the weak Lebesgue space L™>(R") is
contained in LP""P(R™) for every p € [1,n). Similarly we can define the Morrey
space LP*(R™; R™) for vector-valued measurable functions. Capacities related to
Morrey spaces were studied by Adams and Xiao in [AX04].

We have already noticed that the Lorentz spaces embed continuously into the
Morrey spaces; that is to say, L™4(R") — L™>*(R") — LP"P(R") whenever
1 < p<n<q< . Lorentz spaces have been studied extensively by Bennett
and Sharpley in [BS88]. Sobolev-Lorentz spaces have recently been studied by
Kauhanen, Koskela, and Maly in [KKM99] and by Maly, Swanson, and Ziemer in
[MSZ05].

Our results concerning the Sobolev-Lorentz capacity generalize some of the re-
sults concerning s-capacity on R" for s € (1,n]. See [HKM93, Chapter 2] for the
s-capacity on R™ and [KM96], [KMO0O] for capacity on general metric spaces.

We provide sharp estimates for the Sobolev-Lorentz n, g relative capacity of pairs
(B(0,7),B(0,1)) for 1 < ¢ < oo and small r. The Sobolev-Lorentz capacity and
Hausdorff measures are also related; we obtain results that are Sobolev-Lorentz
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analogues of those obtained by Reshetnyak in [Res69], Martio in [Mar79], Maz’ja
in [Maz85] and others.

I would like to thank Juha Heinonen, Ilkka Holopainen and Eero Saksman for
their helpful comments and suggestions.

2. PRELIMINARIES

Our notation in this paper is standard and generally as in [HKM93]. Here
will denote a nonempty open subset of R™, while dox = dm,,(z) will denote the
Lebesgue n-measure in R™, where n > 2 is integer. For two sets A, B C R", we
define dist(A, B), the distance between A and B, by

dist(4, B) = qunlf 5 |a — b.
acA,be

For n > 2 integer €2, = |B(0,1)| denotes the measure of the n-dimensional unit
ball, that is ,, = |B(0,1)|. Thus, w,—1 = nf,, where w,,_1 denotes the spherical
measure of the n — 1-dimensional sphere.

For a measurable u :  — R, supp u is the smallest closed set such that
vanishes outside supp u. We also define

Co(2) = {peC(Q):supp ¢ CC N}
Lip(Q) = {¢:Q — R:pis Lipschitz}.
For a function ¢ € Lip(Q) N Cy() we write

v@ = (8190a 82g07 s ,3n<p)

for the gradient of ¢. This notation makes sense, since from Rademacher’s theorem
([Fed69, Theorem 3.1.6]) every Lipschitz function on R™ is a.e. differentiable.

Throughout this section we will assume that m > 1 is a positive integer. Let
f:Q — R™ be a measurable function. We define A4, the distribution function of
f as follows (see [BS88, Definition II.1.1] and [SW75, p. 57]):

Np(t) = o e Qi 1f@) >}, t>o0.
We define f*, the nonincreasing rearrangement of f by
[r(t) =inf{v: A\jpy(v) <t}, t>0.

(See [BS88, Definition I1.1.5] and [SWT75, p. 189].) We notice that f and f* have the
same distribution function. Moreover, for every positive o we have (| f|*)* = (| f]*)*
and if |g| < |f| a.e. on §, then ¢g* < f*. (See [BS88, Proposition II.1.7].) We also
define f**, the mazimal function of f* by

J”"‘(L‘)=mf*(t)=%/0 f*(s)ds, t>0.

(See [BS88, Definition I1.3.1] and [SW75, p. 203].)
Throughout this paper, we will denote by p’ the Holder conjugate of p € [1, o0],
that is

00 ifp=1
p = % ifl<p<oo
1 if p = oco.

The Lorentz space LP1(Q; R™), 1 < p < 00, 1 < ¢ < 00, is defined as follows:

LPA(Q;R™) = {f : 2 — R™: f is measurable and || f||Lr.a(;rm) < 00},
2



where
1

oo, L L, q
NGROES 1<g<oo
Loy
SUP;~.o tA[f] (t)» =sup,sqos? f*(s) q = oo.
(See [BS88, Definition IV.4.1] and [SW75, p. 191].) If 1 < ¢ < p, then |[-||pr.a(o;rm)

already represents a norm, but for p < ¢ < oo it represents a quasinorm, equivalent
to the norm || - [|.a) (;rm), Where

A llzra@memy = [ p.g =

=

(fes e d)" 1<q<oo
sup;s. t7 f*(t) q = oo.
(See [BS88, Definition IV.4.4].) Namely, from [BS88, Lemma IV.4.5] we have that

HfHL(M)(Q;Rm) = [/l ||(p,q) =

p
Az a) < W leeo@ < 2711 zrae)

for every 1 < g < oo and every measurable function f : Q2 — R™.

It is known that (LP9(Q;R™), || - ||pr.a(o;rm)) is @ Banach space for 1 < ¢ <p,
while (LP9(Q;R™), || - || .0 (o;rm)) 18 @ Banach space for 1 < p < oo, 1 <¢ < oc0.
These spaces are reflexive if 1 < ¢ < co. (See [BS88, Theorem IV.4.7, Corollaries
1.4.3 and IV.4.8], the definition of LP9(Q2; R™) and the discussion after Definition
2.1.)

Definition 2.1. (See [BS88, Definition I.3.1].) Let 1 < p < oo and 1 < ¢ < 0. Let
X = LP9(Q; R™). A function f in X is said to have absolutely continuous norm in
X if and only if || fxEg,||x — 0 for every sequence Ej, satisfying Ej, — 0 a.e.

Let X, be the subspace of X consisting of functions of absolutely continuous
norm and let X, be the closure in X of the set of simple functions. It is known
that X, = X3. (See [BS88, Theorem 1.3.13].) Moreover, we have X, = X; = X
whenever 1 < ¢ < oo. (See [BS88, Theorem IV.4.7 and Corollary IV.4.8] and the
definition of LP7(Q; R™).)

We prove now that X, # X for X = LP>°(Q; R™). Without loss of generality
we can assume that m = 1 and that Q = B(0,2) \ {0}. We define u: Q — R,

o |xTF ifO<|z[ <1
(1) u(@) = { 0 if1<a<2
It is easy to see that u € LP*°(§)) and moreover,

lluxB©.0llLres(@) = llullres@) = /7
for every a > 0. This shows that v does not have absolutely continuous weak
LP-norm and therefore LP**°(€2) does not have absolutely continuous norm. Since
LP>°(Q)) can be identified with (L (€2))* (see [BS88, Corollary IV.4.8]), it follows
from [BS88, Corollaries 1.4.3, 1.4.4, IV.4.8 and Theorem IV.4.7] that neither LP>1(Q),
nor LP>°(Q) are reflexive whenever 1 < p < oo.

Remark 2.2. Tt is also known (see [BS88, Proposition IV.4.2]) that for every p €
(1,00) and 1 < r < s < oo there exists a constant C(p,r, s) such that

(2) [ f] e ) < Closr S e )

for all measurable functions f € LP"(£2; R™) and all integers m > 1. In particular,
we have the embedding LP"(2; R™) — LP*(); R™).
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We have the following generalized Holder inequality for Lorentz spaces.

Theorem 2.3. Let Q C R™. Suppose 1 < p < oo and 1 < g < oco. If f € LP1(Q)
and g € LP"7 (), then

/|f )| dz < || fll o) 19l o )

Proof. We have to analyze two situations, depending on whether ¢ € (1, 00) or not.
Suppose first that 1 < ¢ < co. Then 1 < ¢’ < co and by Holder’s inequality, we
have

/wa*<8 ds—/f )53 =4g*(5)s

By using this and [BS88, Theorem I1.2.2], we get the desired conclusion for 1 < ¢ <
00.

We assume now without loss of generality that ¢ = 1. The case ¢ = oo is similar.
If ¢ = 1 then ¢’ = co and we have

/ooof*(s)g*(s)ds = /ff*(s)s* 9°(5)s7 ds < supg” () / a

191120 o0 () [1f1]Lr 1 02)-

_ 1
7

7 < f a9l oo (@)

% e

By using this and [BS88, Theorem I1.2.2], we get the desired conclusion for ¢ = oo
as well. This finishes the proof.
O

As an application of Theorem 2.3 we have the following result.

Corollary 2.4. Let 1 <p < qg<oo ande € (0,p— 1) be fized. Suppose Q& C R™
has finite measure. Then

(3) [ f]|Lr—<(rm) < C(p,q,2) [P |[f||Lr.a(irm)

for every integer m > 1, where

1 1

— —€ i__1
(pi(q qurE)?p fenTiE, p<g<oo

Clp.g,¢) =
pree e, q =00
Proof. From the definition of the Lorentz norms and quasinorms for vector-valued
functions, it follows that it is enough to assume that m = 1 and that f > 0. We
have to consider two cases, depending on whether ¢ < co or ¢ = oo
Suppose first that ¢ < co. Then from [BS88, Proposition I1.1.7, Definition IV .4.1]
and Theorem 2.3 we have

(4) P ey < 17771,

By taking the p — eth root, we get the desired conclusmn for g < oo.
Assume now that ¢ = co. Then from [BS88, Proposition I1.1.7, Definition IV.4.1]
and Theorem 2.3 we have

(5) P oy < 1P|

By taking the p — eth root, we get the desired conclusion for ¢ = co. This finishes
the proof.

||XQ\|

pep.e

LE‘q p+€(Q)

LP p—e'>® Q)HXQHL%J(Q)

O



We have a few interesting results concerning Lorentz spaces.

Theorem 2.5. Suppose 1 < p < g < oo. Let Q C R"™ and let f1, fo € LP1(Q). We
let fy = max(|ful, | f2]). Then fy € LP4(Q) and
Hf?)”il[)lp,q(g) < ||f1||1£p,q((2) + HfQHI[),p,q(Q)'

Proof. Without loss of generality we can assume that both f; and f; are nonnega-
tive. We have to consider two cases, depending on whether p < ¢ < 0o or ¢ =
Suppose p < ¢ < co. We have ([KKM99, Proposition 2.1])

1ty = (v [ s gt as) "

where Ay, is the distribution function of f; for i = 1,2, 3. From the definition of f3
we obviously have A(z,1(s) < Af,)(s) + Afp,)(s) for every s > 0, which implies that

1 fsllZra@) < (p/o sq1(A[fl](s)+x[f2](s))5ds)

(p/o Sqlk[lfl](8)3d8> " (p/o SqlA[f21(8)5d8> q

||f1||qu (Q) + ||f2||1]ip,q(Q)'

Qs

2

Q

IN

Suppose now ¢ = oo. From the definition of f3 we obviously have as before
Aifs1(8) < App(8) 4 Ay, (s) for every s > 0. Therefore

sP /\[fa](s) <P /\[fl](s) + sP )\[fs](s)

for every s > 0, which implies

(6) N1 (8) < A2 gy + 112l B
for every s > 0. By taking the supremum over all s > 0 in (6), we get the desired
conclusion. ]

Theorem 2.6. Suppose 1 < p < ¢ < oo and ¢ € (0,1). Let Q@ C R"™ and let
f1, fo € LP9(Q). We denote f3 = f1 + fa. Then f3 € LP4(Q) and

||f3||qu Q) = (175) p||f1||LPf1(Q € p”.fQHZ[),Py(I(Q)'

Proof. Without loss of generality we can assume that both f; and fs are nonnega-
tive. We have to consider two cases, depending on whether p < ¢ < oo or ¢ = o0
Suppose p < ¢ < co. We have ([KKM99, Proposition 2.1])

%) q q
lley = (2[5 ap00Fas)

where Ajy,) is the distribution function of f; for i = 1,2,3. From the definition of
f3 we obviously have Ajz,1(s) < Af,1((1 = €)s) + App,)(es) for every s > 0, which
implies that

2

IN

[1Fsl12.00) (P/O ST A (1= 2)s) + A[M(ES))gd&)

<p/ s (1 €)S)Zd8> it (p/ sqlA[f2](68)5d8> '
0 0

(1 - 6)7p||f1||z£p,q(9) + €7p||f2||1£p,q(§z)'
5
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Suppose now g = oo. From the definition of f3 we obviously have as before
Aifs1(8) S A ((1 = €)s) + Appy)(es) for every s > 0. Therefore

sP )\[fa](s) < sP )‘[f1]((1 —e)s)+ sP )\[fs](Es)

for every s > 0, which implies

(7) P Ap)(s) < (1= E)_p||fl||I£p,oo(Q) + 5_p‘|f2‘|ip,oo(g)
for every s > 0. By taking the supremum over all s > 0 in (7), we get the desired
conclusion. (]

Theorem 2.6 has an interesting corollary.

Corollary 2.7. Let 2 C R"™ be open. Suppose 1 < p < oo and 1 < g < oco. Let
frx be a sequence of functions in LP1(Q; R™) converging to f with respect to the
D, g-quasinorm and pointwise a.e. in 2. Then

[ fillzea@mem) = [ fllzra@mm).
Proof. We can assume without loss of generality that m = 1. Since || - [|rr.a(q) is

already a norm for 1 < ¢ < p, the claim is trivial in this case. Hence we can assume
without loss of generality that p < g < oo. The proof for the case ¢ = oo was
presented to me by Jan Maly.

Since f* <liminf f} (see [BS88, Proposition II.1.7]), it follows easily that

likfgicjgfufkﬂm,q(m > | fllLra@)-
We would be done if we show that
(8) li]rcnsup [ fellzrace) < [1fllLrace)

In order to do that we fix € € (0,1). From Theorem 2.6 we have
ka?Hqu(Q (1_5) p||f||qu(Q € p”fk_f'l][),p,tJ(Q)

for every kK = 1,2,... Taking limsup on both sides and using the fact that fy
converges to f with respect to the LP?-quasinorm, we get

(9) ]iinSUPkaHLp Q) = (1_5) p||f||1£p,q(9)'
—00

Letting € — 0 in (9) yields (8). This finishes the proof.

We use the notation
u = max(u,0) and v~ = min(u,0).

If u € Co(2) N Lip(£2), then obviously u™ € Cp(Q2) N Lip(Q) and from [HKMI3,
Lemmas 1.11 and 1.19] we have

Vu ifu>0
+ _
(10) Vi { 0 ifu<O.

Theorem 2.8. Suppose 1 < q < p < co. Let Q@ C R™ and let f1, fa € Co(Q) N
Lip(Q). We denote fz = (|f1|? + | f2|)'/9. Then f3 € Co(Q) N Lip(Q) and
(i) [Vf5]2 < |V f1]2 + |Vf2|q a.e. in Q.
(i) Vsl Tr0rny < VAT 0@y T IV 2l T00@rn):
6



Proof. Without loss of generality we can assume that both f; and f; are nonneg-
ative. We have |fs(x) — fs(9)|? < |fi(z) — fr(w)]? + |f2(x) — f2(y)|? for every
x,y € R™, hence it follows easily that f3 € Co(Q2) N Lip(Q).

(i) We can assume without loss of generality that ¢ > 1. We would be done
immediately if f; € C3(Q) for i = 1,2, 3 by using the previous inequality. Otherwise,
since f; € Co(Q2) N Lip(Q) for i = 1,2,3, it follows immediately from [HKM93,
Lemma 1.11 and Theorem 1.18] that

(11) V(f9) = qff 'V f; ae in R" for i =1,2,3.
The definition of f3 together with (11) implies
(12) I = 1TV A+ 7V ae. in R

By using the definition of f; one more time together with the Cauchy-Schwarz
inequality, (12), and [HKM93, Lemma 1.19], we get the desired conclusion.

(ii) For ¢ = 1,2,3 we denote g; = |V f;|?. Then, since 1 < ¢ < p, we see via
[BS88, Proposition I1.1.7 and Definition IV.4.1] that
(13) g€ A9 and llgll pa g = IV Filloqqumey for i= 1,23
The claim follows by using (13) together with (i), the definition of the functions g;
and the fact that || - ||L%1(Q) is a norm when 1 < ¢ < p. This finishes the proof.

O

Let p be the right-invariant Haar probability measure defined on SO(n), the
compact topological group of orthonormal n x n matrices with entries from R. (For
the existence of left-invariant and right-invariant Haar measures on locally compact
topological groups see [Hal50, Theorem B.58] and the discussion afterwards. For
the uniqueness of such measures see [Hal50, Theorem C.60].)

The following definition was suggested by Eero Saksman.

Definition 2.9. For every measurable function f : R® — R we define T'f as
follows:

(Tf)(x) = /S oy F D)

Since p is right-invariant, it follows that (Tf)(z) = (Tf)(Hz) whenever z €
R", H € SO(n) and f is a measurable function. This implies that T(T'f) = T'f for
every measurable function f. We notice that [(T'f)(z)— (T'f)(y)| < fSO(n) |f(Hx)—
f(Hy)|du(H). This implies easily that T(C(R™)) € C(R"™) and that T'(Lip(R™)) C
Lip(R™). Moreover, for every f € C'(R") we have, via Lebesgue dominated con-
vergence theorem

1
lim —

0
h—0 |h]

IN

Tf(erh)Tf(z)/SO( )Vf(Hx)~th,u(H)

/ L\ F(Hz + HR) — f(Hz) — V(Hz) - Hh| du(H) = 0
som) 1M

whenever # € R™. This implies immediately that T'(C*(R™)) C C*(R") for every
k > 1 with

(14) V(T)(x) = / V f(Hz) - H du(H)

SO(n)
7



pointwise in R™ whenever f € C1(R™). From (14) it follows easily that
(15) IV(TF) ()] < /50( )IVfI(Hl’) du(H) = (T|V f])()
pointwise in R™ whenever f € C1(R").

Proposition 2.10. Suppose 1 < p < oo and 1 < q < oo. Then

@) 1T fllzeo@ry < [[fllLewo@ny for every f € Co(R™).
(ii) If 1 < q < p, then ||[Tf||pr.arn) < || fl|Lra(mn) for every f € Co(R™).

Proof. We fix p € (1,00) and ¢ € [1,00]. Let f € Co(R™). It is easy to see (see
Definition 2.9 and the discussion afterwards) that T'f € Co(R").

Let g € LP"7 (R™). Without loss of generality we can assume that g is supported
in supp T'f. Then it follows from Theorem 2.3 that g € L*(R™). Moreover, we have

’/ (TN@g@ds| < [ (TP @) ds

/" </SO(n) |f(Hx)d“(H)> l9(x)| dx
) /So(n) (/R [f(Hz)g(x)] df”) dp(H),

where we used Fubini’s theorem for the equality in the sequence. It is easy to see
that |f o H|* = |f|* for every H € SO(n). Since u is a probability measure, we
obtain, via (16) and [BS88, Theorem I1.2.2]:

a7) | 1@n@eeia < [

From (17) it follows, via [BS88, Theorem I1.2.7] that

(18) /O (Tf)"(s ds</ 7

By using (18) together with [BS88, Proposition 11.4.2, Theorem IV.4.3, Theorem
IV.4.6 and Theorem IV.4.7], we get the desired conclusion. O

IN

Proposition 2.11. Suppose 1 < p < 0o and 1 < g < oo. Let w : [Q,r™, Q] —
[0, 00) be defined by w(t) = (t/Q,)"/™. Suppose f : [r,1] — [0,00) is continuous and
let g : [Qur™, Q] — [0,00) be defined by g(t) = f(w(t)). Then

(19) ||gHLP 4 ([Qpr™,Qy)) >1’LQ HfHLl([r 1])||(t/Q ) L/m’ || ([ Q™ Q0]

Proof. From the change of variable formula we get

1 [

(20) / f(t)dt = /Q ”ng<t)w’<t>dt=n9n 0 (t/Q) """ dt.

The claim follows by using (20) and [BS88, Theorem I1.2.2], via Holder’s inequality.
(I

Lemma 2.12. Suppose q € [1,00] and let ¢' be the Holder conjugate of q. Then
there exists C = C(n,q) such that

1
7’

/ 1
1/2) ™ Wl 0 S C (14107
:
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for every r € (0,1). When q = 1, the right-hand side is interpreted as a constant.
Proof. Let h : [Q,7",Q,] — [0,00) be defined by h(t) = (t/Q,)~*/"" and let Alh)
be the distribution function of hA. Then
0 if s >l m
(21) Am(s) =9 (s_"/ —r") ifl1<s<plon
Q, (1 —1") if0<s<l1.
We have to consider two cases, depending on whether ¢ =1 or 1 < ¢ < 0.
Suppose first that ¢ = 1. Then ¢’ = co. From (21) and [SW75, p. 191] we have

1A = 0m 2,1y = SR A ()™ = En(1 =),

hence the claim holds when ¢ = 1.
Suppose now that ¢ > 1. Then ¢’ < co. We have ([KKM99, Proposition 2.1])

’

q o < 2
Ln”«’([nnrn,nn}ﬁn/0 sT7 Any(s) ™ ds.

We denote J(n,q) = ||h]|

[IA]

’

qL""q'([Qnr",Qn])' Then from (21) we have

1 , pl-n ) /
J(n,q) = n' (/ | (1= 7] s 71ds+/ 1, (s — )| w7 s 1d$>
0 1

’ 1 rl—n ’
’ 4 1 1
nQ / s7 s +/ s7tds | < nQy (/ +(n—1)In ) .
0 1 q r

This yields the desired conclusion for ¢ > 1. The Lemma is proved.

3 3\‘-&

IN

3. SOBOLEV-LORENTZ n,q RELATIVE CAPACITY

Suppose 1 < ¢ < co. Let 2 C R”™ be an open set. Let K C  be compact. The
Sobolev-Lorentz n, g-capacity of the pair (K, Q) is denoted

g (6, 2) = inf {[[Vul[ o sgmery : 0 € W, D)},
where

W(K,Q)={ueC5(Q) :u>1 in a neighborhood of K}.
We call W (K, Q) the set of admissible functions for the condenser (K, Q).

Lemma 3.1. If K C Q is compact, then we can get the same capacity if we restrict
ourselves to a bigger set, namely

Wo(K,Q) ={ue Co()NLip():u>1on K}.

Proof. Let u € Wy (K, ). We can assume without loss of generality that « > 1 in
a neighborhood U CC Q of K and that € is bounded. Let n € C§°(B(0,1)) be a
mollifier. For every integer j > 1 let n;(z) = j"n(jz) and let u; = n; * u be the
convolution defined by

wi() = (ny ) (z) = / 0y (@ — y)uly)dy.

n

9



For the basic properties of a mollifier see [Zie89, Theorems 1.6.1 and 2.1.3]. Let U
be a neighborhood of K such that U CC U and let jy be a positive integer such
that

1/jo < min{dist(supp u, dQ), dist(U, dU)}.

It is easy to see that w;,j > jo is a sequence in W (K, ) and since u € Cp(2) N
Lip(©2), we have from [HKM93, Lemma 1.11] that

Jin (lluy — ullznr@) + IV =Vl @mm) = 0.

This together with (2) and Theorem 2.3 yields
(22) Jim (lluj = ullzna@) + IV = Vullpna@ren) = 0.

An appeal to Corollary 2.7 applied for p = n establishes the assertion, since
W(K,Q) Cc Wo(K, Q). |

Since truncation decreases the n, g-quasinorm whenever 1 < ¢ < oo, it follows
from Lemma 3.1 that we can choose only functions v € Wy(K,Q) that satisfy
0 < u <1 when computing the n, q relative capacity.

3.1. Basic properties of the n,q relative capacity. Usually, a capacity is a
monotone and subadditive set function. The following theorem will show, among
other things, that this is true in the case of the n,q relative capacity. We follow
[HKM93].

Theorem 3.2. Suppose 1 < q < oo. Let 2 C R™ be open. The set function
K Capn’q(K,Q), K C Q, K compact, enjoys the following properties:

(1) [f Kl C KQ; then Capn,q(KhQ) < Capn,q(K27Q)'

(ii) If Q1 C Qq are open and K is a compact subset of Qq, then

capn’q(K, Q) < capn’q(K, ).

(iii) If K; is a decreasing sequence of compact subsets of Q with K = (2, K,
then
capn’q(K,Q) = lim capnAq(Ki,Q).
1— 00 ’
(iv) If ; is an increasing sequence of open sets with |J;o, Q; = Q and K is a
compact subset of Qy, then

cap,, ,(K,Q) = zlir{.lo cap,, ,(K, ;).

(v) Supposen < q<oo. If K = Ule K; C Q then
k
capy 4 (Kv Q) < Z capy, 4 (Kia Q)a

i=1
where k > 1 is a positive integer.
(vi) Suppose 1 <g<n. If K = Ule K; C Q then

k
cap%{;‘(K, Q) < anp%{;‘(Ki,Q),
i=1
where k > 1 is a positive integer.
10



Proof. Properties (i) and (ii) are immediate consequences of the definition.

(iii) Let b =: lim; . cap,, ,(K;, Q). We fix a small ¢ > 0 and we pick a function
u € W(K, Q) such that

HVU" |Z"vq(Q;R") < Capn,q(Kv Q) +e.

When i is large, the sets K; lie in the compact set {u > 1 — e}. Therefore

1
WHV’M
Letting ¢ — 0 yields b < cap,, ,(K, ), hence (iii) follows because obviously b >
cap,, ,(K,Q).

hm Capn,q(Ki; Q) S Capn,q({u Z 1- 5}7 Q) S 27“‘1(9;1:{")'

(iv) Let b =: lim; . cap,, ,(K, ;). We fix a small € > 0 and we pick a function
u € W(K, Q) such that
HVU" |Z"vq(Q;R") < Capn,q(Kv Q) +e.
When i is large, the support of u lies in ;. Therefore
zli>nolo Capn,q(K7 Qz) S ||vu| |2"’Q(Q;Rn) < Capn,q(K7 Q) + €.

Letting ¢ — 0 yields b < cap,, ,(k,2), hence (iv) follows because we obviously have
b > cap,, ,(K,Q).

It is enough to prove (v) and (vi) for k = 2 because then the general finite case
follows by induction.

(v) When ¢ = n we are in the case of the n-capacity and then the claim holds.
(See for example [HKM93, Theorem 2.2 (iii)].) So we can assume without loss of
generality that n < ¢ < 0.

Let u; € Wo(K;,Q), i = 1,2, such that

Vi |7na(imn) < cappq(Ki, Q) +e.

We define u = max(ug,uz). Since u = (u; — uz)™ + ug, it follows from the
discussion after Corollary 2.7 and (10) that v € Wy(K; U Ko,Q) with |[Vu| <
max(|Vuy|,|Vuz|). Using this and Theorem 2.5, we get
Capn,q(Kl UK>,Q) < ||vu||7LL"«fl(Q;R") < HvuleLm(Q;Rn) + ||vu2||2”v‘1(ﬂ;R")
< cap, (K1,Q) + cap,, ,(K2,Q) + 2.

Letting ¢ — 0 we complete the proof in the case of two sets, and hence the general
finite case.

(vi) The idea of the proof for the case 1 < g < n was suggested to me by Eero
Saksman. I credit him for Theorem 2.8 as well.
Let u; € Wo(K;, ), i = 1,2, such that

0<wu; <1and HVuinLn_,q(Q;Rn) < cap?l{gl(Ki,Q) +e.

We define u = (uf 4+ u%)'/9. Then Theorem 2.8 implies that u € Wy(K; U K3, ()
with

Cap%{g(Kl U KQ,Q) < ||VU||%"~Q(Q;R7L) < HvulHan,q(Q;Rn) + ||VU2|

capg{g(Kl,Q) + cap%{;’(Kz, Q) + 2e.
11

q
Lra(QR™)

IN



Letting ¢ — 0 we complete the proof in the case of two sets, and hence the general
finite case. The theorem is proved. ([

Remark 3.3. The definition of the n, g-capacity easily implies
Ca'pn,q(Kv Q) - Ca'pn,q(aKa Q)

whenever K is a compact set in €.
3.1.1. The scaling invariance of the n, ¢ relative capacity. Suppose 1 < ¢ <
oo. Obviously, cap,, ,(K,Q) = cap,, ,(K + x,Q + x) whenever Q C R" is open,
K C Q is compact and x € R™. Indeed, the n,¢-quasinorm is invariant under
translations.
Lemma 3.4. Suppose 1 < q < oco. Let Q be open and K C Q be compact. Then
(23) Ca‘pn,q(Ka Q) = Ca‘pn,q(aKv O[Q),
where a > 0 and oA = {aa : a € A}.
Proof. We have to analyze two cases, depending on whether 1 < g < oo or ¢ = co.

We assume first that 1 < g < oo. Let u € C§°(Q2). We define u(,) : a2 — R by
Ue)(r) = u(Z). Then v € W(K,Q) if and only if uy € W(akK,af2). We notice
that Vu(y)(z) = £ Vu(Z). We have

ES z
o a

o € aQ: [Vugy(@)| 2 0} =z € a2 ~[Vu(D)] 2 1}
= HreaQ: |[Vu(2)| > at}] =a"[{ € Q:|Vu(2)| > at}]
50 A[|Vua, |1 (1) = @™ Avup(at) for every ¢ > 0. Therefore
[Vuyl*(t) = inf{v>0: )\Hvu<a)|](’l}) <t} =inf{v > 0: " Ajjyy(av) < t}

t
o)

Hence we just proved that [Vu(y|*(t) = £|Vu|*(Z) for every ¢ > 0. Therefore
T dt

e dt o 1 t
4 * q 1 *
IVtelnunmn = [ 1 (V) § = [T (G1vur)) T

By making the substitution ﬁ = s, we have

> 4 [1 Lot \7dt A .. \7ds ‘
[T (Gvrcn) T [ et (A9e) 5 = IVl

Thus we get ||[Vul|pmaaorn) = ||[Vul|pnaorn). This proves the claim when
1< g < o0

Now assume that ¢ = oo. We let u € C§°(2) and we define u(,) as before.
Then as before, we have u € W(K,Q) if and only if u,) € W(ak,aR2) and
[Vu|*(t) = 2|Vu|* (L) for every t > 0. This implies

1. t 1 .
= 3 inf{av >0: )\[Wun(av) < a7} = a|Vu| (

t

)"

n * n t *
(24)  [IVu@)llLro@omryy = supt (|Vue|* ()" = sup — (|[Vu[*(
t>0 t>0 &

= sups ([Vul'(s)" = [IVullin@rn):

This finishes the proof.
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Lemma 3.5. Suppose 1 < g < oco. Let @ C R™ be open and K C ) compact. Then
(25) cap,, ,(K,) = capn’q(H_lK7 H_lQ)
whenever H € SO(n).

Proof. Let u € C§°(Q). We define uy : H'Q — R by uy(z) = u(Hz). Then
u € W(K,Q) if and only if uy € W(H 'K, H Q). We notice that Vuy(z) =
Vu(Hz)-H. Since H € SO(n), this implies immediately that |Vug (z)| = |[Vu(Hz)|
for every x € R™ and that |Vug|*(t) = |Vu|*(t) for every ¢ > 0. The desired
conclusion follows easily from this, the definition of the Lorentz quasinorm for
vector-valued functions and the definition of the n, g relative capacity. ([

3.2. Estimates for the n,q relative capacity. Next we get some estimates for

the n, ¢ relative capacity of the spherical condenser (B(0,r), B(0,1)).

3.2.1. Lower estimates for the n, ¢ relative capacity. The lower estimates for
the relative capacity are always harder to get than the upper estimates. However,
we start with the lower ones.

Let 7 € (0,1). We define W (B(0,7), B(0,1)) = T(W (B(0,r), B(0,1))).

Lemma 3.6. Let 1 < g < oo be fized. Then
B Z"’Q(B(O,l);R") Tu e W(E(O,T), B(Oa 1))}

cap, o(B(O.7), BO1) < inf([Vu
< (21) cowa(BO.0). 5O, 1)

for every r € (0,1). Moreover, the first inequality in the sequence becomes equality
when 1 < q < n.

Proof. Let r € (0,1) and g € [1,00] be fixed. From the discussion after Definition
2.9 it follows that W(E(O,r),B(O, 1)) is a subset of W(B(0,), B(0,1)). By using
this together with (15), Proposition 2.10, [BS88, Lemma IV.4.5] and the definition
of the Sobolev-Lorentz capacity, we get the desired conclusion. 0

Theorem 3.7. Let 1 < q < oo be fized and let ¢ be the Holder conjugate of q.
There exists a constant Cy(n,q) > 0 such that

7

1 —
Cl(n7Q> <1+1n ) < capy, q(B(07T)7B(071))
r ;
for every 0 < r < 1. When q =1, the left-hand side is interpreted as a constant.

Proof. Let q € [1,00] be fixed and let r € (0,1). When g = n we are in the case of
the n-capacity and then the result is a consequence of [HKM93, 2.13|. Therefore,
we can assume without loss of generality that q # n. From Lemma 3.6, we see
that it is enough to consider only functions in W (B(0,r), B(0,1)) in order to get
the desired lower bounds. So let u € W(B(0,r), B(0,1)). We can assume without
loss of generality that 0 < u < 1. We have uo H = u for every H € SO(n),
hence there exists a function f € C°°(]0,1]) such that u(x) = f(|z|) for every
x € B(0,1). Hence |[Vu(z)| = | f'(|z|)| for every = € B(0,1). Moreover, f'(t) = 0 for
every t € [0,7]. If we define g : [0,Q,] — [0,00) by g(t) = |f'|((t/Q,)"/™), we notice
that g is a continuous function compactly supported in (Q,7", Q,,). Moreover, since
[Vu(z)| = g(Qn|z|™) for every x € B(0,1), it follows that |Vu| and g have the same
13



distribution function. From this and the fact that g is supported in (,,7™,Q,) we
obtain

(26) IVullpwaso)rm) = 19llma@ar0.)-
But u € W(B(0,r), B(0,1)) with v = 1 on B(0, 7). Hence for each y € dB(0,1) we

have

1 1 1
(27) 1< [ Igutslas < [ Vatslds = [ 17(s)lds

From (26), (27), Proposition 2.11 and Lemma 2.12 we obtain

1
a’

~ 1
||VUJHL"J1(B(O,1);R") > Cl(n, q) <1 + In T)

for every u € W(E(O,rLB(O, 1)) such that u = 1 on B(0,r). By using this and
Lemma 3.6, we get the desired conclusion. [

Corollary 3.8. There exists a constant C = C(n) > 0 such that
cap,, 1 ({2}, ) = C(n)

whenever x € R™ and Q is an open subset of R™ containing x.

Proof. Since the n, 1 relative capacity is invariant under translations, we can assume
without loss of generality that 2 = 0. (See the discussion before Lemma 3.4.) The
claim follows from Theorem 3.2 (ii)-(iv), Lemma 3.4 and Theorem 3.7. It was
easy to see the positivity of the aforementioned capacity for bounded open sets €2
containing x. The fact that this capacity is independent of both the open set and
the point was observed by Ilkka Holopainen. I thank him for this fact. O

We can obtain the lower bound from Theorem 3.7 whenn < ¢ < ocoand 0 < r <
e~ »—1 via a different method. Before we do that we need the following result:

Proposition 3.9. Let Q C R" be bounded, let n < ¢ < oo, and let € € (0,n — 1)
be fixed. Then for every K C Q0 compact we have

(28) capy/ U7 (K, Q) < C(n,q,¢) |75 capl/ (K, Q).

Proof. Let K be compact in . Let u € W(K,Q). Then from Corollary 2.4 applied
for p = n and the definition of the || - |[pn—-(qrn)-norm and || - [|Lm.0 @mrn)-
quasinorm we have

V]| e mmy < C(1,q,€) |70 || V|| Lra(orn)-

Taking the infimum on both sides over such functions u, we get the claim for K C Q
compact. This finishes the proof. O

We now present the different method to obtain the lower bound from Theorem
1
37whenn<g<occand 0<r<e »-1.

Proof. (of Theorem 3.7) We have to consider two cases, depending on whether
n < q<ooorq=oo.
14



First we consider the case n < ¢ < oo. From (28) applied for p=n and n < ¢ <
o0, there exists a constant
1

1 _ 1
C(n,e,q) = QI ket (”(Q—n+5)> ntE
q

such that

cap, 2" (B(0,7), B(0.1)) < C(n.e,q) capy/g (B(0.7), B(0,1))
for every € € (0,n — 1) and every r € (0,1). From [HKM93, 2.13] we have

n—e—1
- € = —n4e
cap,,_.(B(0,7), B(0,1)) = w,_1 (n_g_ 1) (rm et — 1)iTnte,

Therefore,
(29) capy/ 7 (B(0,), B(0,1)) = Ci(n,e,q) '~ 172
for every 0 < e <n — 1, where

-k i__1
L Q, """ (n(q -n+ 6)> @ n=e

n— p

Cl(naEaQ) =w

—

n—e—1

(n—e—1) n-=

We define
Cl(naQ) = inf 1cl(n757Q)'

0<e<n—
We notice that Cy(n,q) > 0. This together with (29) implies

(30) capl/7(B(0,7), B(0,1)) > Cy(n,q) &'~ v 7.
For r € (0, e_ﬁ)a we let € = 1n1;- Then 0 < ¢ < n — 1 and from (30) it follows
that "
— C n 1 z-n
(31) cop (B0.0).B(0.r) = DD (1 1)

for every r € (0,e” e ). This yields the desired lower bound for the relative capacity
whenever n < ¢ < oo and 1 € (O,E_ﬁ).
Now we assume ¢ = co. From (28) we have

czanpl/(rkg)(g(o7 r),B(0,1)) < QI e~ we pe capl/” (B(0,r), B(0,1))

n—e oo
for every € € (0,n — 1). This together with [HKM93, 2.13] gives
(32) capy/m (B(0,7), B(0,1)) > Cy(n,e)erv—s

for every 0 < € <n — 1, where

—c n—e—1 1

IET
Ci(n,e) =w) 10 """ P (n—eg—1)" 7= n w-e.

We define

Ci(n) = _inf _ Ci(n,e).

We notice that C1(n) > 0. This together with (32) implies
(33) cap,/5(B(0,7), B(0,1)) > Ci(n)er—e.

15



For r € (0, e_ﬁ) we let ¢ = 1n1l' Then 0 < e <n —1 and from (33) it follows
that

T

_ n 1\ "
(34) capn,oo(B(O,r),B(O, 1)) > Cle# <1n 7“>
for every r € (O,e_ﬁ). We let Ci(n,q) = C1(n) when ¢ = oo. This yields the

desired lower bound for the relative capacity when ¢ = co and r € (0, e‘ﬁ).
O

3.2.2. Upper estimates for the n, g relative capacity. Next we get some upper
estimates for the Sobolev-Lorentz n, q relative capacity.

Theorem 3.10. Let 1 < ¢ < oo be fized and let ¢’ be the Héolder conjugate of q.
There exists a constant Cz2(n,q) > 0 such that

nn

a’

capy o(B(0,7), B(0,1)) < Ca(n,q) <1n 7{)

for every 0 < r < e~ 7T, When q = 1, the right-hand side is interpreted as a
constant.

Proof. We let r € (0,1) be fixed. We use the function v : B(0,1) — R defined by

(2) = 1 ifo<|z|<r
TEE <] < 1
Then
0 ifo<|zl<r
Vul@l =9 e ifr <o < 1.

1
We notice that u & Wy (B(0,7), B(0,1)). However,
(35) cap, o(B(0,7), B(0,1)) < [|Vul[Zna(p(0,1)mm)
because

||vu||Ln,q(B(071);Rn) = ;1_{% |‘VU5‘|L1L,q(B(071);Rn),

where us, 0 < § < =T is a sequence in Wy (B(0,r), B(0,1)) defined by

T

1 ifo<|z|<r
In (1+6 .
us(x) = 7111&(1&‘5' ifr<lz| < lflré
0 if =5 <z < 1.

We want to get an upper estimate for ||Vu||zn.qa(5(0,1);r») Whenever 1 < ¢ < oo.
We define v : B(0,1) — R by v(z) = —Inr|Vu(z)|. We compute Ap,;. We recall
that ,, = |B(0,1)|. We have

Ap)(t) = {z € B(0,1) \ B(0,r) : %' >t} = |{zr € B(0,1)\ B(0,r) : |z| < %}|

Hence



‘We notice that

1

vty = (atee)” H0<t<0, 0=
0 if t Z Qn (1 —r")_

We compute |[v]|1n.a(B(0,1))- We have to consider two cases, depending on whether
1< g < ooorgqg=oo.

We assume first that 1 < g < co. Let

Qp(1—r™) .
T =l = | £ (0 (1)

By making the substitution t = s Q,,7", we get

/Qn(l—r")tq 1 = dt Qg /lrﬁn . 1 = ds
n S —_ = 77{ sn J—
o t/Qy +rm t 0 s+1 s
o (1 0 L 0
_ QOn / gi-1 1 ds—l—/ s ds
0 s+1 1 s+1 s

1—r" a 1 ~ 1
(nJrln " )gQ;{ (n+nln>§C’2(n,q)ln
q rn q r r

if 0 < r < e~ 7-1. From the above inequality, together with (35) and the fact that
v = —Inr|Vul, it follows that

S

J

|
3

33

< Q

2_n
q

(36) . (B(0.1), BO.1) < Caln.g) ()

whenever 1 < g <ocoand 0 <r < e~ 71, Hence the claim holds for 1 < g < oo.
Now assume g = co. We have

n * n t n
[l (B(0,1)) = iggt(v )" = sup =Q, (1-7").

0<t<Q, (1—rn) £/ + 17
Therefore

n 1 -
Lo (B(0,1);R") = ln; [Iv]

From this and (35) we get

[Vl

n n 1 -
L™ (B(0,1)) = Qn (1 —-Tr ) (h’l r) .

(37) cap,, o (B(0,7), B(0,1)) < Q, (ln i) )

for every r € (0,1), hence the claim holds also for ¢ = oo. This finishes the proof
of the theorem.

O
By combining Theorems 3.7 and 3.10, we get the following:

Theorem 3.11. Let 1 < g < oo be fized and let ¢’ be its Holder conjugate. Then
there exists a constant C(n,q) > 0 such that

Clna)™ (7)< cap, (BO0.0). BO.1) < Clng) ()

1
for every 0 <r <e 71,
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4. HAUSDORFF MEASURE AND THE SOBOLEV-LORENTZ n, g-CAPACITY

In this section we examine the relationship between Hausdorff measures and the
Sobolev-Lorentz n, g-capacity.

Definition 4.1. Let 1 < ¢ < co. Let K be a compact set in R™. We say that K is
of n, g-capacity zero if
cap, ,(K,Q) =0

whenever ) is an open neighborhood of K. In this case we write cap,, ,(K) = 0.

From Corollary 3.8 and Theorem 3.2 (i) it follows immediately that a compact
set K C R™ is of n, 1 capacity zero if and only if K = ().
Before proceeding, we recall the following version of the Poincaré inequality.

Theorem 4.2. Poincaré inequality for Sobolev-Lorentz spaces. Let {2 C R"
be bounded. Let 1 < q < oo be fized. Then there exists a constant C(n,q) such that

1
(38) [[ul|Lraa)y < C(n, @) |7 |[Vul|pra@mrn)
for every u € C§°(Q).

Proof. For every u € C§°(€2) we have (see [GT83, Lemma 7.14]):
1

(39) u(@)] £ —— (1| Vul)(2)

n—1

for every x € R™. We recall that for every measurable function f in R", I3 f is its
Riesz potential of order 1. (See [BS88, Definition IV.4.17] and [HeiO1, p. 20].) An
application of Hardy-Littlewood-Sobolev theorem of fractional integration ([BS88,
Theorem 1V .4.18]) together with Theorem 2.3, [BS88, Proposition I1.1.7] and (39)
yields the desired conclusion. O

Theorem 4.3. Suppose 1 < q < oo. Let E be a compact set in R™. If there exists
a constant M > 0 such that

cap,, ,(E£,Q) <M < oo
for all open sets Q1 containing E, then cap,, ,(E) = 0.

Proof. When ¢ = n we are in the case of the n-capacity and then the claim holds.
(See for example [HKM93, Lemma 2.34].) So we can assume without loss of gen-
erality that ¢ # n. We let 2 be a fixed open neighborhood of E. We can assume
without loss of generality that €2 is bounded. We choose a descending sequence of
open sets

Q=020 >D---DDNYy; =F
and we choose ¢; € W(E,€;), 0 < ¢; <1 with ¢; =1 on F and
‘|vWi||z",Q(Qi;Rn) <M +1.

From the Poincaré inequality for Sobolev-Lorentz spaces (38) we have that (¢;, Vi)

is bounded in the space L™?(Q2) x L™(Q; R™). We notice that ¢; converges point-

wise to a function ¢ which is 1 on F and 0 on R™\ E. Hence, from Mazur’s lemma

([Yos80, p. 120]), [BS88, Lemma IV.4.5], and the reflexivity of L™9()x L™(Q); R™)

it follows that there exists a subsequence denoted again by ¢; such that (p;, Vi)
18



converges weakly to (1,0) in L™9(Q) x L™?(Q; R™) and a sequence @; of convex
combinations of ¢;,

Ji Ji
Bi=) Nijei Xip=0, Y Nij=1,

such that (@;, V@;) converges to (¢,0) in L™9(2) x L™(; R™). The closedness of
W (E, ;) under finite convex combinations implies that ¢; € W(E, ;) for every
integer ¢ > 1. Therefore

0 S Ca’pn,q(E? Q) S hm sup Hvasz"'q(Q“R") =0.

11— 00

]

Theorem 4.4. Suppose that 1 < q < oo and that E is a compact set in R™. For
1 <g<oowelethy,:[0,00) = R be defined by

0 ift=0
hng(t)=9{ (ng) 7 ifo<t<j
2(In2) vt ift> 1

(i) If 1 < g < n, then Ah%/; (E) < oo implies cap,, ,(E) = 0.
(i) If n < g < o0, then Ahq(E) < oo implies cap,, ,(F)
(iii) If ¢ = oo, then Ap, ,(E) = 0 implies cap,, ..(E,Q) =
open neighborhood of E.

whenever § is an

Proof. We have to analyze three cases, depending on whether 1 < ¢ <norn <g¢<
o0 or g = oo. It is enough to prove that cap,, ,(E,€) = 0 whenever 2 is a bounded
open neighborhood of E. So let €2 be a bounded open set containing E. We denote
by § the distance from E to the complement of 2. Without loss of generality we
can assume that 0 < § < e -7, Fix 0 < ¢ < 1 such that ¢ < iég; then r < ¢
implies In(2.) > 31In(1). We cover E by open balls B(z;,7;) such that r; < ie.
Since we may assume that the balls B(z;,r;) intersect F, we have B(z;, g) Cc Q. In
fact, since E is compact, E is covered by finitely many of the balls B(x;,r;).

We assume first that 1 < ¢ < n. Using Theorem 3.2 (ii) and (v) we obtain

— — 4]
Cap%g(Ev Q) < Z Cap%{g(B(xia 7‘1-), Q) < Z cap%{;(B(xi, ri)v B(xi’ 5))

= anp%{g(g(oari)vB(()? g)) < C(TL,Q)Z (hl :z) _ ’

where in the last step we also used (36) together with our choice of . Taking the
infimum over all such coverings and letting € — 0, we conclude

Cap%{g(Ev Q) < O(”»Q)Ah%/; (E) < oo.

Since ) was an arbitrary bounded open set containing F, the desired conclusion
follows from Theorems 3.2 (ii) and 4.3 when 1 < ¢ < n.

We assume now that n < g < co. When ¢ = n we are in the case of the n-capacity
and then the claim holds. (See for example [HKM93, Theorem 2.27].) So we can
19



assume without loss of generality that n < g < oco. Using the finite subadditivity
and the monotonicity property of the n, g-capacity we obtain

)
capn’q(E,Q) < anpn’q(B(mhri),Q) < anpn’q(B(xi,m),B(xi, 5))

5 1\i ™"
;capmq(B(O,m), B0, 5)) < C(n,q) zZ: (1n n) ,
where in the last step we also used (36) together with our choice of . Taking the
infimum over all such coverings, we conclude

cap,, ,(£,Q) < C(n,q)An, ,(E) < oo.

Since 2 was an arbitrary bounded open set containing F, the desired conclusion
follows from Theorems 3.2 (ii) and 4.3 when n < ¢ < co.

We assume now that ¢ = co. Using the finite subadditivity and the monotonicity
property of the n, co-capacity we obtain

6
< E T < E o i
Capn,oo(Ea Q) < i Capnyoo(B(xl, i), Q) < i Capn,oo(B(I“ i), B(xi, 2))

T

8 1\ "
— anpn’oo(B(O,ri),B(Q 7)) <Cm) Z <1n ) :
where in the last step we also used (37) together with our choice of . Taking the
infimum over all such coverings, we conclude

capnyoo(E, ) <C(n)Ap, . (E) =0.
O

Remark 4.5. Tt is known that if cap, (F) = 0, then Ap(F) = 0 whenever E is a
compact set in R™ and & is an increasing function on [0, 00) such that h(0) = 0,
and )
/ h(r)lﬂn*l)ﬂ < 0.
0 r

(See [AH96, p. 20 and Theorem 5.1.13] and [HKM93, Corollary 2.40].) This corre-
sponds to the case ¢ = n. It is not known if we have similar results for ¢ # n. A
possible result would be the following:

Conjecture 4.6. Let E be a compact set in R™ and let 1 < q < oo be such
that q # n. Then, if there exists a bounded open neighborhood Q2 of E such that
cap, ,(£,Q) = 0, we have Ap(E) = 0 whenever h is an increasing function on
[0,00) such that h(0) =0, and

1 ’
/ h(r)q?@ < 0.
O ’r.
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