MATH 4L03 Assignment #7 Solutions

Do the following exercises from the course textbook:

1. Exercise 6.5, page 268

Solution: For (a) (i), this is handled earlier in the text. Let Gr be the (finite) set of these axioms. For (ii) the formula

$$
O_n(x) = \left(x^n = e \land \left(\bigwedge_{0 < j < n} \neg x^j = e\right)\right)
$$

will hold for an element x of a group if and only if it has order n . So the sentence $\forall x \neg O_n(x)$ will hold in a group if and only if the group does not have an element of order n . For part (iii), the following set of axioms, along with the set Gr , will work:

$$
\Sigma = \{ \forall x \neg O_n(x) \mid n > 1 \}.
$$

For part (b), suppose that the theory T of torsion free groups is finitely axiomatizable. Then there is a single sentence σ such that a group G is torsion free if and only if it satisfies σ . But then the following set is not satisfiable:

$$
Gr \cup \Sigma \cup \{\neg \sigma\}
$$

and so by the compactness theorem, there is some finite subset Δ of Σ such that $Gr \cup \Delta \cup \{\neg \sigma\}$ is not satisfiable. Let

$$
N = \max\{n \mid \forall x \neg O_n(x) \in \Delta\}.
$$

Let p be a prime number with $p > N$ and consider the cyclic group \mathbb{Z}_p . It is not torsion free and so satisfies $Gr \cup {\neg \sigma}$ and it does not have elements of order N or less and so it also satisfies Δ , which is a contradiction.

2. Exercise 6.12, page 271

Solution: Let Σ axiomatize T and let Δ be some finite set of axioms for T. We may assume that Δ consists of a single sentence δ . Then

 $\Sigma \models \delta$ so there is some finite subset Σ' of Σ with $\Sigma' \models \delta$ (this follows from the compactness or the completeness theorem). But then Σ' is a finite subset of Σ that axiomatizes T.

3. Exercise 6.17, page 275

Solution: For part (a) (i), a model $\mathcal A$ of Γ would be a well ordered $\mathcal A$ set that has a subset $\{c_n^{\mathcal{A}} \mid n > 0\}$ that has no least element. For (ii), if Δ is a finite subset of Γ then only a finite number N of sentences of the form $c_{n+1} < c_n$ will appear in it. Let \mathcal{A}_{2N} be the structure with domain $\{0, 1, \ldots, 2N\}$ that interprets \langle in the usual way on this set. Then this structure is a well ordering and so satisfies Σ . The structure will interpret the constant symbols c_n that appear in Δ with distinct elements of $\{0, 1, \ldots, 2N\}$ in a way that if c_n and c_m both appear and $n < m$, then c_m is interpreted as a smaller number than c_n is. By the choice of N this can be accomplished since at most $2N$ different constants will appear in Δ . So, we have a model of Δ .

For (b), if Σ axiomatizes the theory of well-order then we obtain a contradiction from part (a), namely, we can produce a set Γ that is not satisfiable, but that is finitely satisfiable.

4. Exercise 6.24, page 287

Solution: Suppose that there is some first-order language L and set of L-sentences Σ such that Σ describes R. By using the updward Lowenheim-Skolem Theorem we can get a structure that satisfies Σ that has cardinality greater than \mathbb{R} . So, Σ does not solely describe the structure R.

There is another way to answer this question. We can show that Σ must have a model for which the completeness property fails. Let c be a new constant symbol and let L_c be L with c added and let Σ_c be the set

 $\Sigma \cup \{1 < c, 1 + 1 < c, \ldots, 1 + 1 + 1 + \cdots + 1 < c, \ldots\}.$

Then Σ_c has a model since every finite subset of it is satisfiable. To see this, let \mathbb{R}_c be the expansion of \mathbb{R} to the language L_c such that c is interpreted as an integer that is bigger than any of the sums that

appear in the finite subset. This expanded structure will be a model of the finite subset.

In the model $\mathcal A$ of Σ_c that the compactness theorem provides, consider the following set: $N = \{1, 1 + 1, \ldots, 1 + 1 + 1 + \cdots + 1, \ldots\}$, i.e., the set of natural numbers, as interpreted in the model A. This set is bounded above by the element $c^{\mathcal{A}}$ and so by the completeness axiom there must be some least upper bound b in A for this set. But the element $b-1$ is also an upper bound for N , since if it isn't, there will be some integer m with $b-1 < m$. From this we get that $b < m+1$ and so conclude that b (and hence c) wasn't an upper bound of N in the first place.

So, no such set Σ can exist.

5. Exercise 6.25 (a), (c), page 288

Solution: For (a), by the downward Lowenheim-Skolem theorem we can obtain a countable set that satisfies the proposed axioms.

For (c) , the issue here is that $\mathbb R$ is uncountable, but we are working in a countable language. We know that any non-trivial real vector space is uncountably infinite, since it will have a 1-dimensional subspace (and this subspace is isomorphic to R, considered as a 1-dimensional real vector space. So the subspace and hence the entire space is uncountably infinite. But, by the downward Lowenheim-Skolem Theorem, our axioms will have a countable non-trivial model. This is a contradiction.

6. Exercise 6.29, page 291

Solution: We can use a similar technique used in the solution to 6.24 above. We can build a model that satisfies that same sentences as R but that has an element that is bigger than all of the integers. Using the Lowenheim-Skolem Theorem, we can obtain such a model that has the same cardinality as R. These two models cannot be isomorphic.

7. Exercise 6.37, page 299

Solution: $Th(A)$ is complete, since it is consistent (it has a model) and for every sentence ϕ , ϕ will be in $Th(\mathcal{A})$ if $\mathcal{A} \models \phi$ or $\neg \phi$ will be in $Th(\mathcal{A})$ otherwise (since then $\mathcal{A} \models \neg \phi$.