
MATH 4L03 Assignment #4 Solutions

Due: Friday, November 8, 11:59pm.

1. Do exercise 4.11 (b) on page 150 of the textbook.

Solution: The following occurrences of variables are free: the second
occurrence of x1 and the first and third occurrences of x2. All other
occurrences of variables are bound.

2. Do exercise 4.12 from page 150 of the textbook.

Solution:

� The scope of ∀y is the subformula (∃x(R(y, z) → ∃yR(x, y)) ∧
¬∀zR(x, y)). The first and third occurrences of y in this subfor-
mula are bound by this quantifier.

� The scope of ∃x is the subformula (R(y, z) → ∃yR(x, y)). The
occurrence of x in this subformula is bound by this quantifier.

� The scope of ∀y is the first occurrence of the subformula R(x, y).
The occurrence of y in this subformula is bound by this quantifier.

� The scope of ∀z is the second occurrence of the subformula R(x, y).
No variables are bound by this quantifier.

3. Do exercise 4.13 from page 151 of the textbook.

Solution: The values of the three terms, using the given structure and
interpretation of variables is:

(a) 4

(b) 8

(c) 37

4. Let L be the first order language that has a single 2 place relation
symbol E. Show that if A = ⟨A,EA⟩ is an L-structure that satisfies
the following two sentences:

∀x (E(x, x))
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∀x∀y∀z ((E(x, y) ∧ E(y, z)) → E(z, x))

then it also satisfies the sentence

∀x∀y (E(x, y) → E(y, x)) .

Note that this provides a slightly shorter axiomatization of the class of
equivalence relation structures.

Solution:

Suppose thatA = ⟨A,EA⟩ is a structure that satisfies the two sentences
given in the problem. Let a, b ∈ A and suppose that (a, b) ∈ EA.
We must show that (b, a) ∈ EA. From the first sentence we know
that (a, a) ∈ EA and from the second we know that (a, a) ∈ EA and
(a, b) ∈ EA implies (b, a) ∈ EA as required.

5. (a) Using the same language L as in the previous question, show that
there is no L-structure A = ⟨A,EA⟩ which satisfies the sentences:

∃x∀y (E(x, y))

∃x∀y (¬E(x, y))

∀x∀y((E(x, y) → E(y, x)) .

(b) Is there an L-structure A = ⟨A,EA⟩ that satisfies the sentences:

∀x∃y (E(x, y))

∀x∀y (E(x, y) → ¬E(y, x))

∀x∀y∀z ((E(x, y) ∧ E(y, z)) → E(x, z))?

Solution: Note that when the context is clear, the interpretation of
a relation symbol R by a structure A will be written as just R rather
than RA. The same will apply to interpretations of function symbols.

(a) If ⟨A,E⟩ is a structure which satisfies the three given sentences,
then there is some element of A, call it ∞ with (∞, a) ∈ E for all
a in A. From the second statement, we see that there is another
element of A, call it ♣, with (♣, b) /∈ E for all b ∈ A. So we have,
in particular, that (∞,♣) ∈ E and (♣,∞) /∈ E. Finally, the
third statement shows that since (∞,♣) ∈ E then (♣,∞) ∈ E, a
contradiction.
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(b) The structure ⟨N, <⟩ satisfies all three of the sentences.

6. Let N be the structure ⟨N,+, ·, 0, 1,≤⟩, where the function symbols +
and ·, the constant symbols 0 and 1 and the predicate symbol ≤ have
their usual interpretations on the set of natural numbers. Determine
which of the following sentences are satisfied by the structure N:

i) ∀x∃y(x = y + y ∨ x = (y + y) + 1),

ii) ∀x∀y∃z(x+ z = y)

iii) ∀x∀y(x ≤ y ↔ ∃z(x+ z = y)).

Solution:

The first sentence is true in N since it expresses the fact that every
natural number is either even or odd.

The second statement is not true in N since by setting x to 1 and y to
0 we see that there is no natural number z with x+ z = y.

The third statement is true in N since it expresses the fact that a
natural number is less than or equal to another iff their difference is a
natural number.

7. Let L be a first order language with equality. For each natural number
n, find sentences αn, βn and γn such that for all normal L-structures
A:

(a) A |= αn iff A has exactly n elements,

(b) A |= βn iff A has at least n elements,

(c) A |= γn iff A has at most n elements.

Find a set Σ of sentences such that a normal L-structure A |= Σ iff A is
infinite. Note that the set Σ must consist of infinitely many sentences
(we will prove this later).

Solution:

For n > 1 let βn be the formula:

∃x1∃x2 · · · ∃xn

(∧
i ̸=j

xi ̸= xj

)
.
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Then a normal structure A satisfies βn if and only if it has at least n
distinct elements. With the βn’s we can define αn = (βn ∧ ¬βn+1) and
γn = ¬βn+1.

Let Σ = {βn | n > 1}.

B1 In this problem, we assume that McMaster has a countably infinite
number of students S = {s0, s1, . . . , sn, . . . } and that C is the set of
courses that are on offer to them. Due to resource limitations, each
student in S will be assigned to exactly one class from C. Also, each
course c ∈ C has its enrolment capped at some finite number ec. Each
student s ∈ S provides a finite set Cs ⊆ C of the courses that they are
willing to register in.

For A ⊆ S, a function α : A → C is a good assignment for A if

� For each s ∈ A, α(s) ∈ Cs (so α assigns to s one of the courses
they selected), and

� for each class c ∈ C, |α−1(c)| ≤ ec (so no class is over-enrolled by
α).

Suppose that for each finite subset A of S there is some good assign-
ment α : A → C for A. Prove that there is some good assignment
α : S → C for the entire set S. In your solution you should formulate
this situation within propositional logic and then use the Compactness
Theorem.

Solution:

For each s ∈ S and c ∈ C, introduce a new propositional variable Ps,c.
The intended meaning of this variable is that s is assigned to the course
c.

Given S, C, Cs, and ec as above, for A ⊆ S, let ΓA be the following
(infinite) set of propositional formulas:

� for each s ∈ A, the formula ∨
c∈Cs

Ps,c.

(So if true, each student gets assigned to at least one of their
preferred courses.)
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� for each s ∈ A and c, d ∈ C with c ̸= d, the formula ¬(Ps,c ∧Ps,d).
(So if true, no student gets assigned to two different courses.)

� for each c ∈ C and each subset B ⊆ A with |B| = ec + 1, the
formula

¬

(∧
b∈B

Pb,c

)
.

(So if true, there will never be more than ec students enrolled in
the course c.)

We claim that for A ⊆ S, the set of formulas ΓA is satisfiable if and
only if there is a good assignment f : A → C.

For one direction, suppose that f : A → C is good. Let νf be the
following truth assignment:

νf (Ps,c) =

{
T if f(s) = c

F f(s) ̸= c or s /∈ A
.

It can be seen that each of the formulas in ΓA are satisfied by this
assignment, since f(s) ∈ Cs for each s ∈ A, and |f−1(c)| ≤ ec for each
c ∈ C.

Conversely, suppose that ν satisfies ΓA. Define fν(x) : A → C by:
fν(s) = c if and only if ν(Ps,c) = T . Since ν satisfies ΓA, then for each
s ∈ A, there is a unique class c ∈ C such that ν(Ps,c) = T , and this c
belongs to Cs. Furthermore, for each c ∈ C, |f−1

ν (c)| ≤ ec, for if not,
then one of the formulas of the third type above would be not satisfied
by ν.

So, to show that there is a good assignment f : S → C it suffices to
show that the set ΓS is satisfiable. By the Compactness Theorem, it
suffices to show that each finite subset ∆ of ΓS is satisfiable. Given
such a subset ∆, it follows that there is some finite subset A ⊂ S such
that ∆ ⊆ ΓA. Just let A consist of all s ∈ S such that the variable Ps,c

occurs in some formula in ∆, for some c ∈ C.

So, it suffices to show that for each finite subset A of S, the set ΓA

is satisfiable. But this is exactly the assumption that has been made,
namely, that for each finite subset A of S, there is a good assignment
f : A → C (equivalently, that ΓA is satisfiable).

5



B2 Do exercise 4.24 from the textbook.

Solution: We use Theorem 4.1 to solve this problem. Suppose A, a⃗,
and ϕ are given as in the problem. If

A |=[x⃗/a⃗] ϕ

then
A |=[x⃗/a⃗][xi/ai] ϕ

so by definition,
A |=[x⃗/a⃗] ∃xiϕ.

Conversely, suppose that

A |=[x⃗/a⃗] ∃xiϕ.

Then by definition, for some c ∈ A,

A |=[x⃗/a⃗][xi/c] ϕ.

By Theorem 4.1, it follows that

A |=[x⃗/a⃗][xi/ai] ϕ

since xi doesn’t occur freely in ϕ. Thus

A |=[x⃗/a⃗] ϕ.
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