Extensions of the Keen-Minsky Model for Financial Fragility

M. R. Grasselli

Sharcnet Chair in Financial Mathematics
Mathematics and Statistics - McMaster University
Joint work with B. Costa Lima, X.-S. Wang, J. Wu

University of Western Sydney, August 03, 2012
Why another talk on financial crises?

- Because they are a *hardy perennial*.
- Because macroeconomics is too important to be left at the hands of macroeconomists.
- Because *Carthago delenda est*
Dynamic Stochastic General Equilibrium

- Overwhelmingly dominant school in macroeconomics.
- Seeks to explain the aggregate economy using theories based on strong microeconomic foundations.
- All variables are assumed to be simultaneously in equilibrium.
- The only way the economy can be in disequilibrium at any point in time is through decisions based on wrong information.
- Money is neutral in its effect on real variables and only affects price levels.
- Largely ignores the role of irreducible uncertainty.
The strand of DSGE economists affiliated with RBC theory made the following predictions after 2008:

1. Increases government borrowing would lead to higher interest rates on government debt because of “crowding out”.
2. Increases in the money supply would lead to inflation.
3. Fiscal stimulus has zero effect in an ideal world and negative effect in practice (because of decreased confidence).
Wrong prediction number 1

Figure: Government borrowing and interest rates.
Figure: Monetary base and inflation.
Wrong prediction number 3

FISCAL TIGHTENING AND EUROZONE GDP 2008-12

Figure: Fiscal tightening and GDP.
Meanwhile in Britain...

Figure: Office for National Statistics (UK), April 2012
Extensions of the Keen-Minsky Model for Financial Fragility

M. R. Grasselli

Introduction

Goodwin model
Keen model
Stabilizing government
Ponzi financing
Model with Noise

Soft core (saltwater) DSGE

- The strand of DSGE economists affiliated with New Keynesian theory got all these predictions right.
- They did so by augmented DSGE with ‘imperfections’ (wage stickiness, asymmetric information, imperfect competition, etc).
- Still DSGE at core - analogous to adding epicycles to Ptolemaic planetary system.
- For example: “Ignoring the foreign component, or looking at the world as a whole, the overall level of debt makes no difference to aggregate net worth – one person’s liability is another person’s asset.” (Paul Krugman and Gauti B. Eggertsson, 2010, pp. 2-3)
Then we can safely ignore this...

Figure: Private and public debt ratios.
Figure: Change in debt and unemployment.
Neoclassical economics is based on barter paradigm: money is convenient to eliminate the double coincidence of wants.

In a modern economy, firms make complex portfolios decisions: which assets to hold and how to fund them.

Financial institutions determine the way funds are available for ownership of capital and production.

Uncertainty in valuation of cash flows (assets) and credit risk (liabilities) drive fluctuations in real demand and investment.

Economy is fundamentally cyclical, with each state (boom, crisis, deflation, stagnation, expansion and recovery) containing the elements leading to the next in an identifiable manner.
Minsky’s Financial Instability Hypothesis

- Start when the economy is doing well but firms and banks are conservative.
- Most projects succeed - “Existing debt is easily validated: it pays to lever”.
- Revised valuation of cash flows, exponential growth in credit, investment and asset prices.
- Beginning of “euphoric economy”: increased debt to equity ratios, development of Ponzi financier.
- Viability of business activity is eventually compromised.
- Ponzi financiers have to sell assets, liquidity dries out, asset market is flooded.
- Euphoria becomes a panic.
- “Stability - or tranquility - in a world with a cyclical past and capitalist financial institutions is destabilizing”.

Introduction

- Goodwin model
- Keen model
- Stabilizing government
- Ponzi financing
- Model with Noise
Goodwin Model (1967) - Assumptions

- Assume that

 \[N(t) = N_0 e^{\beta t} \]
 (total labour force)

 \[a(t) = a_0 e^{\alpha t} \]
 (productivity per worker)

 \[Y(t) = \nu K(t) = a(t)L(t) \]
 (total yearly output)

 where \(K \) is the total stock of capital and \(L \) is the employed population.

- Assume further that

 \[\dot{w} = \Phi(\lambda)w \]
 (Phillips curve)

 \[\dot{K} = (Y - wL) - \delta K \]
 (Say’s Law)
Extensions of the Keen-Minsky Model for Financial Fragility

M. R. Grasselli

Introduction

Goodwin model

Derivation

Example

Keen model

Stabilizing government

Ponzi financing

Model with Noise

Goodwin Model - Differential equations

Define

\[\omega = \frac{wL}{Y} = \frac{w}{a} \quad \text{(wage share)} \]

\[\lambda = \frac{L}{N} = \frac{Y}{aN} \quad \text{(employment rate)} \]

It then follows that

\[\dot{\omega} = \omega(\Phi(\lambda) - \alpha) \]

\[\dot{\lambda} = \lambda \left(\frac{1 - \omega}{\nu} - \alpha - \beta - \delta \right) \]
Extensions of the Keen-Minsky Model for Financial Fragility

M. R. Grasselli

Introduction

Goodwin model

Derivation

Example

Keen model

Stabilizing government

Ponzi financing

Model with Noise

Example 1: Goodwin model
Example 1 (continued): Goodwin model

\[w_0 = 0.8, \lambda_0 = 0.9, Y_0 = 100 \]
Assume now that new investment is given by

\[\dot{K} = \kappa(1 - \omega - rd)Y - \delta K \]

where \(\kappa(\cdot) \) is \(C^1(-\infty, \infty) \) increasing function satisfying certain technical conditions.

Accordingly, total output evolves as

\[\frac{\dot{Y}}{Y} = \frac{\kappa(1 - \omega - rd)}{\nu} - \delta := g(\omega, d) \]

This leads to external financing through debt evolving according to

\[\dot{D} = \kappa(1 - \omega - rd)Y - (1 - \omega - rd)Y \]
Denote the debt ratio in the economy by $d = D/Y$, the model can now be described by the following system

\[
\begin{align*}
\dot{\omega} &= \omega \left[\Phi(\lambda) - \alpha \right] \\
\dot{\lambda} &= \lambda \left[\frac{\kappa(1 - \omega - rd)}{\nu} - \alpha - \beta - \delta \right] \\
\dot{d} &= d \left[r - \frac{\kappa(1 - \omega - rd)}{\nu} + \delta \right] + \kappa(1 - \omega - rd) - (1 - \omega)
\end{align*}
\]
Good equilibrium

- Define
 \[\bar{\pi}_1 = \kappa^{-1}(\nu(\alpha + \beta + \delta)) \]

- Then the following is an equilibrium for (1):
 \[\bar{\omega}_1 = 1 - \bar{\pi}_1 - r \frac{\nu(\alpha + \beta + \delta) - \bar{\pi}_1}{\alpha + \beta} \]
 \[\bar{\lambda}_1 = \Phi^{-1}(\alpha) \]
 \[\bar{d}_1 = \frac{\nu(\alpha + \beta + \delta) - \bar{\pi}_1}{\alpha + \beta} \]

- Moreover
 \[g(\bar{\omega}_1, \bar{d}_1) = \kappa \left(1 - \bar{\omega}_1 - r \bar{d}_1 \right) - \delta = \alpha + \beta. \]
Bad equilibrium

- If we rewrite the system with the change of variables $u = 1/d$, we obtain

\[\dot{\omega} = \omega [\Phi(\lambda) - \alpha] \]
\[\dot{\lambda} = \lambda \left[\frac{\kappa(1 - \omega - r/u)}{\nu} - \alpha - \beta - \delta \right] \]
\[\dot{u} = u \left[\frac{\kappa(1 - \omega - r/u)}{\nu} - r - \delta \right] - u^2 \left[\kappa(1 - \omega - r/u) - (1 - \omega) \right] . \]

- We now see that $(0, 0, 0)$ is an equilibrium of (2) corresponding to the point

\[(\bar{\omega}_2, \bar{\lambda}_2, \bar{d}_2) = (0, 0, +\infty) \]

for the original system.
Local stability

- Analyzing the Jacobian of (1) and (2) we obtain the following conclusions.
- The good equilibrium \((\overline{ω}_1, \overline{λ}_1, \overline{d}_1)\) is stable if and only if
 \[
 r \left[\frac{\kappa'(\overline{π}_1)}{\nu} (\overline{π}_1 - \kappa(\overline{π}_1) + \nu(\alpha + \beta)) - (\alpha + \beta) \right] > 0.
 \]
- The point \((0, 0, 0)\) is a stable equilibrium for (2) if and only if
 \[
 \frac{\kappa_0}{\nu} - \delta < r.
 \]
Example 2: convergence to the good equilibrium in a Keen model
Example 2 (continued): convergence to the good equilibrium in a Keen model

ω₀ = 0.75, λ₀ = 0.75, d₀ = 0.1, Y₀ = 100
Example 3: explosive debt in a Keen model
Example 3 (continued): explosive debt in a Keen model

\[\omega_0 = 0.75, \lambda_0 = 0.7, d_0 = 0.1, Y_0 = 100 \]
Example 3 (continued): explosive debt in a Keen model
Example 3 (continued): explosive debt in a Keen model

\[\omega_0 = 0.75, \lambda_0 = 0.7, d_0 = 0.1 \]
Data detour: debt

Private Debt as % of GDP

Extensions of the Keen-Minsky Model for Financial Fragility

M. R. Grasselli

Introduction

Goodwin model

Keen model

Derivation

Equilibria

Examples

Stabilizing government

Ponzi financing

Model with Noise
Extensions of the Keen-Minsky Model for Financial Fragility

M. R. Grasselli

Introduction

Goodwin model

Keen model

Derivation

Equilibria

Examples

Stabilizing government

Ponzi financing

Model with Noise

Data detour: debt and employment

Figure: Source: Keen (2009)
Basin of convergence for Keen model
Introducing a government sector

- Following Keen (and echoing Minsky) we add discretionary government spending and taxation into the original system in the form

\[G = G_1 + G_2 \]
\[T = T_1 + T_2 \]

where

\[\dot{G}_1 = \eta_1(\lambda)Y \]
\[\dot{G}_2 = \eta_2(\lambda)G_2 \]
\[\dot{T}_1 = \Theta_1(\pi)Y \]
\[\dot{T}_2 = \Theta_2(\pi)T_2 \]

- Defining \(g = G/Y \) and \(t = T/Y \), the net profit share is now

\[\pi = 1 - \omega - rd + g - t, \]

and government debt evolves according to

\[\dot{D}_g = rD_g + G - T. \]
Example 4: Start with initial conditions near the locally stable equilibrium at infinite debt . . .
Example 4 (continued): ... then add government to drive it to the locally stable good equilibrium.
Example 4 (continued): But the system still crashes for sufficiently bad initial conditions!

\[\omega_0 = 0.3, \lambda_0 = 0.3, d_0 = 5, g_0 = 0.1, t_0 = 0.1, r = 0.03, \eta_{\text{max}} = 0.01 \]
Example 5: Make government spending high enough, however, and the system is persistent . . .
Example 5 (continued): ...no matter how bad it starts.
Hopft bifurcation with respect to government spending.
Ponzi financing

To introduce the destabilizing effect of purely speculative investment, we consider a modified version of the previous model with

\[
\begin{align*}
\dot{D} &= \kappa(1 - \omega - rd)Y - (1 - \omega - rd)Y + P \\
\dot{P} &= \Psi(g(\omega, d)P
\end{align*}
\]

where \(\Psi(\cdot) \) is an increasing function of the growth rate of economic output

\[
g(\omega, d) = \frac{\kappa(1 - \omega - rd)}{\nu} - \delta.
\]
Example 4: effect of Ponzi financing

\[\omega_0 = 0.95, \lambda_0 = 0.9, d_0 = 0, p_0 = 0.1, Y_0 = 100 \]
Example 4 (continued): effect of Ponzi financing

\(\omega_0 = 0.95, \lambda_0 = 0.9, d_0 = 0, p_0 = 0.1, Y_0 = 100 \)

Graphs showing the effects of Ponzi financing compared to no speculation.
Consider a stock price process of the form

\[
\frac{dS_t}{S_t} = r_b dt + \sigma dW_t + \gamma \mu_t dt - \gamma dN(\mu_t)
\]

where \(N_t\) is a Cox process with stochastic intensity \(\mu_t = M(p(t))\).

The interest rate for private debt is modelled as

\[r_t = r_b + r_p(t)\]

where

\[r_p(t) = \rho_1(S_t + \rho_2)^\rho_3\]
Example 6: stock prices, explosive debt, zero speculation

Extensions of the Keen-Minsky Model for Financial Fragility

M. R. Grasselli

Introduction

Goodwin model

Keen model

Stabilizing government

Ponzi financing

Model with Noise
Example 6: stock prices, explosive debt, explosive speculation
Example 6: stock prices, finite debt, finite speculation
Extensions of the Keen-Minsky Model for Financial Fragility

M. R. Grasselli

Introduction

Goodwin model
Keen model
Stabilizing government
Ponzi financing
Model with Noise

Stability map for $\omega_0 = 0.8$, $p_0 = 0.01$, $S_0 = 100$, $T = 500$, $dt = 0.005$, # of simulations = 100
Next steps

- Investigate the effects of austerity versus deficit spending for depressed economies
- Model prices for capital goods P_k and commodities P_c explicitly (Kaleckian mark-up theory, inflation, etc)
- Extend the stochastic model (stochastic interest rates, monetary policy, correlated market sectors, etc)
- Extend to an open economy model (exchange rates, capital flows, etc)
- Calibrate to macroeconomic time series
Concluding thoughts

- Solow (1990): The true test of a simple model is whether it helps us to make sense of the world. Marx was, of course, dead wrong about this. We have changed the world in all sorts of ways, with mixed results; the point is to interpret it.

- Schumpeter (1939): Cycles are not, like tonsils, separable things that might be treated by themselves, but are, like the beat of the heart, of the essence of the organism that displays them.