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We consider the strategic interaction between two firms competing for the opportunity to invest in a
project with uncertain future values. Starting in complete markets, we provide a rigorous characterization
of the strategies followed by each firm in continuous time in the context of a timing/coordination game.
In particular, the roles of leader and follower emerge from the resulting symmetric, Markov, sub-game
perfect equilibrium. Comparing the expected value obtained by each firm in this case with that obtained
when the roles of leader and follower are predetermined, we are able to calculate the amount of money
that a firm would be willing to spend in advance (either by paying a license or acquiring market power)
to have the right to be the leader in a subsequent game – what we call the priority option. We extend
these results to incomplete markets by using utility-indifference arguments.
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1. Introduction

The need to incorporate strategic interactions within the real options paradigm for decision
making under uncertainty has long been recognized in the literature. In a recent review article,
Azevedo and Paxson [1] present an exhaustive survey ranging from the pioneering contributions
of Smets [13] and Grenadier [8] to a catalogue of more than fifty articles dealing with different
aspects of the intersection between game theory and real options. The majority of the papers
surveyed deal with what they call the “standard” real option game: two symmetric risk-neutral
firms competing to invest in a single underlying project in a continuous-time framework. A large
portion of the review is dedicated to the intricacies involved in a rigorous formulation of games
in continuous time. The authors also make passing references to “non-standard” formulations,
such as risk-averse firms, asymmetric competition, multiple players, and sequential games.

Against this landscape, we can situate our paper as a contribution to a rigorous treatment of
the duopoly game for both complete and incomplete markets. In the context of the standard real
option game described above, Grenadier [9] characterizes a solution in terms of the stochastic
demand Yt associated with the underlying project: for an initial demand Y0 below a threshold
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YL both firms defer investment, whereas if Y0 is higher than a threshold YF both firms invest
immediately. When the demand is in the interval [YL, YF ), each firm has an incentive to invest
provided the other firm defers investment. Grenadier [9] derives an equilibrium consisting of
mixed strategies resulting in the possibility of investment occurring sequentially, with one of the
firms emerging as the leader and the other as the follower, or simultaneously. However insightful,
the derivation is heuristic and does not satisfactorily address some delicate questions regarding
the timing of the decision, such as what happens to the continuous-time process (Yt) while the
two firms play the many rounds of a potentially infinite game. In this paper, we recast the result
of Grenadier [9] into the timing/coordination game framework of Dutta and Rustichini [5] and
Thijssen [14], while extending it to incomplete markets.

In a more recent contribution, Bensoussan, Diltz and Hoe [2] consider real option games in
both complete and incomplete markets under the assumption of preassigned leader and follower
roles. They justify this type of Stackelberg game by saying that the roles are predetermined by
regulatory or competitive advantages. By contrast, in our analysis these roles are endogenously
determined in equilibrium. It is intuitive that a preassigned leader should extract a higher value
from the game than one that emerges from a competitive equilibrium, since the former does not
face the threat of early investment from a competitor. By comparing the expected value for the
leader in our formulation with the leader value obtained in Bensoussan et al. [2], we are able to
quantify the value of such competitive advantage that gives one firm priority to invest over the
other. We call this the priority option and compute its value for both complete and incomplete
markets.

The paper is organized as follows. In Section 2 we analyze the standard real option game
described above in the context of a timing/coordination game. As usual we begin by obtaining
the optimal strategy for a follower given that one of the firms has already invested in the project,
which reduces to a classical optimal stopping problem. We then consider the value realized
by a leader who knows that the other firm will act according to the optimal follower strategy
just obtained. Because of market completeness, this can be computed as an expected value of
discounted future cash flows taking into account the fact that the follower invests at a future
optimal stopping time. Based on these values, we prove the main result of this section in Theorem
4: below a threshold YL neither firm has any incentive to invest in the project, above a higher
threshold YF both firms invest immediately, and in the intermediate region [YL, YF ] the two firms
play a timing/coordination game. This is a rigorous version of the result of Grenadier mentioned
above, with the delicate issue of what happens at the end points YL and YF fully explored.

We compute the priority option value in a complete market in Section 2.4. A firm with the
preassigned role of a leader faces an optimal stopping problem with a payoff function equal to the
leader value computed in the previous sections. As in Bensoussan et al. [2], this gives rise to an
obstacle problem where the obstacle is not differentiable at YF , leading to a solution characterized
by three different thresholds, rather than the more familiar single-threshold solution for classical
optimal stopping problems. Below the first threshold Y1 the leader has no incentive to invest, but
invests in the interval [Y1, Y2]. When the demand is in the interval [Y2, Y3] the leader does not
have an incentive to invest either, and instead waits for it either to rise to Y3 or to drop to Y2. This
is because, after investing in the project, the leader faces a decrease in value once the follower
also invests at YF ∈ (Y2, Y3), but a preassigned leader does not need to worry about preemption
from the other firm and therefore has the luxury to wait until demand is sufficiently away from
YF . The surprising feature is that this occurs in both directions: when demand is higher than
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Y3 then the preassigned leader invests simply because demand is high enough to justify both
firms being in the market, whereas when demand is lower than Y2 the entry threshold for the
follower YF is so far away that the leader reaps the benefits from being alone in the market for
a sufficiently long time to justify investment. The difference between the value obtained by a
preassigned leader and the value expected by each firm when the roles are not predetermined is
the priority option value computed in Proposition 7.

In the complete market case, we can equivalently choose either the demand process (Yt)
or the corresponding project value (Vt) process as the underlying variable of interest, since
they are related through expectations of discounted future cash flows under the unique risk-
neutral measure as, for example, in expression (2.18). Because this is no longer true in incomplete
markets, in Section 3 we focus directly on project values, which are treated as lump-sums received
by the firms at the time of investment. The optimal stopping problem for the follower then reduces
to that treated in Henderson [10], from which we can directly read both the follower investment
threshold VF and follower value function through expression (3.8). Accordingly, upon entrance
of the follower in the market, the leader experiences a loss modelled as a one-time reduction in
project value by a fraction (1−b), where 0 < b < 1 measures the residual value left for the leader.
Because the leader anticipates this loss, its utility indifference value enters the calculation of the
value function for the leader in (3.14).

As it turns out, the calculation of the investment threshold VL for the leader is significantly
more complicated in incomplete markets. In Proposition 9 we derive sufficient conditions for
the existence of VL and characterize it as the unique solution of a transcendental equation. The
conditions are written in terms of the residual fractional value b for the leader, showing that the
leader has an incentive to invest provided b is large enough. Moreover, the conditions depend
on the level of risk aversion and we verify numerically that VL approaches VF as risk aversion
increases. In other words, when firms are sufficiently risk averse, there is no discernible advantage
of being a leader in an incomplete market. We present our last two results in Section 3.4, where
we calculate the value function for a preassigned leader and the corresponding priority option
value. As in complete markets, the preassigned leader faces a stopping problem with a payoff
given by the value function previously obtained in (3.14). Once more, lack of differentiability
at VF leads to a solution in terms of three thresholds, with interpretations analogous to the
ones discussed in the complete market case. We then find the priority option value through
utility indifference arguments by comparing the value functions of a leader with and without a
preassigned role. Section 4 concludes the paper with a discussion of the results and suggestions
for further research.

2. Option to Invest in Complete Markets

Let us consider two firms that can invest in an uncertain project by paying a fixed sunk cost
of K. Notice that this does not mean that the investment cost is paid all at once, but merely
corresponds to the present value of the investment cost at the time the option to invest is
exercised. Each firm can alternatively invest in a riskless bank account at a fixed interest rate r.
Once the investment is made, the project immediately starts to produces a cash flow at the rate
DQ(t)Yt, where Yt is the underlying stochastic demand, Q(t) is the number of firms which have
invested in the project by date t, and D reflects the corresponding inverse demand curve. We
assume that D1 > D2, which reflects the fact that there is an advantage in being the first firm
to invest. We also assume that D0 = 0, meaning that the project is in an idle state before the
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option to invest is exercised.
The stochastic demand (Yt) is a diffusion process with dynamics given by

dYt
Yt

= νdt+ ηdWt, (2.1)

where (Wt) is a standard one-dimensional Brownian motion under the probability measure P. We
impose market completeness by assuming that (Yt) is perfectly correlated with a traded financial
asset whose price dynamics is given by

dPt
Pt

= µdt+ σdWt = rdt+ σdWQ
t , (2.2)

where WQ
t = Wt + λt is a Brownian motion under the unique risk-neutral measure Q and

λ = (µ− r)/σ is the Sharpe ratio for the traded financial asset. It follows that the dynamics of
the stochastic demand under Q is

dYt
Yt

= (ν − ηλ)dt+ ηdWQ
t = (r + η(ξ − λ))dt+ ηdWQ

t , (2.3)

where ξ = (ν − r)/η plays the role of a Sharpe ratio for the project. In what follows, we denote
by Y t,ys the solution of (2.3) for s ≥ t with initial value y at time t, that is, Y t,yt = y.

Because the market is complete, we can use the risk-neutral dynamics above and the discount
rate r to calculate the present value of a stream of future cash flows. For example, when both
firms have already invested, so that the instantaneous cash flow per unit of demand is D2, we
find that the value at time t of all future cash flows obtained from the project given is

V F (y) = EQ
[ˆ ∞

t

e−r(s−t)D2Y
t,y
s ds|

]
=
ˆ ∞
t

e−r(s−t)D2EQ [Y t,ys ]
ds

=
ˆ ∞
t

e−r(s−t)D2ye
(r+η(ξ−λ))(s−t)ds

= D2y

η(λ− ξ) . (2.4)

In other words, if we define

δ := η(λ− ξ), (2.5)

we observe that the instantaneous cash flow D2Yt is equal to δ times the project value at t, from
which we see that δ plays the role of a dividend rate, so that the dynamics (2.3) can be written
as

dYt
Yt

= (r − δ)dt+ ηdWQ
t . (2.6)

2.1. Follower Value

We denote a firm by L (“Leader") if it is the first to invest, by F (“Follower") if it is the second to
invest and by S if both firms invest simultaneously. Notice that these roles are not predetermined,
but follow from equilibrium considerations based on the values that we shall derive next.

We start with the follower value. If one of the firms has already invested, the remaining firm
has an option to invest in the project at a random time τ by paying the fixed cost K and start
receiving cash flows with present value given by V F (Yτ ) = D2Yτ/δ, according to (2.4). Assuming
that this option has infinite maturity, we recognize this as a perpetual early-exercise option with
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payoff (D2Yτ/δ −K)+. Since the market is assumed to be complete, the value of this option is
given by

F (y) = sup
τ∈T

EQ

[
e−rτ

(
D2Y

0,y
τ

δ
−K

)+

1{τ<∞}

]
, (2.7)

where T := T[0,∞] denotes the collection of all F-stopping times with values in [0,∞]. As it is
well known (see Appendix A), the dynamic programming equation corresponding to this optimal
stopping problem is the variational inequality

min
(
rF − η2

2 y
2F ′′ − (r − δ)yF ′, F −

(
D2y

δ
−K

)+
)

= 0, (2.8)

supplemented by the conditions F (v) ≥ 0 and F (0) = 0. Since the obstacle function

g(y) =
(
D2y

δ
−K

)+
(2.9)

has polynomial growth, we can use a classical verification argument to show that a candidate
solution to (2.8) is indeed the value function F (y) in (2.7). Following the heuristic derivation
presented in Chapter 5 of [4], we find that F (y) has the form presented in the next proposition
and shown in Figure 1.

Fig. 1. Follower value as a function of demand in a complete market. The straight line D2y/δ − K is the payoff
obtained from exercise at a level of demand equal to y, with optimal exercise corresponding to the threshold
y = YF . When the parameters are set as (K, ν, η, µ, σ, r,D1, D2) = (10, 0.01, 0.2, 0.04, 0.3, 0.03, 1, 0.35), we have
YF = 1.83 and β = 1.71.
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Proposition 1. Provided δ = η(λ − ξ) > 0, the value F (y) of being the follower at a demand
level y is

F (y) =


K

β − 1

(
y

YF

)β
if y ≤ YF ,

D2y

δ
−K if y > YF ,

(2.10)

where YF is a threshold given by

YF = δKβ

D2(β − 1) , (2.11)

and

β :=
(

1
2 −

r − δ
η2

)
+

√(
1
2 −

r − δ
η2

)2
+ 2r
η2 > 1. (2.12)

Proof. It suffices to show that F (·) satisfies the conditions of Theorem 10.4.1 in [12], which we
reproduce in Appendix A for convenience. Set

D = {y ∈ R : F (y) > g(y)} = (0, YF ), (2.13)

and observe that the constant β and the threshold YF were chosen so that F (y) satisfies the
matching and smooth pasting conditions

F (YF ) = g(YF ) (2.14)
F ′(YF ) = g′(YF ). (2.15)

We then have that F ∈ C1(G) ∩ C(G) and F ∈ C2(G\∂D) with locally bounded second order
derivative near ∂D, so conditions (i) and (v) of Theorem 13 are satisfied. Conditions (ii), (iii),
(iv), (viii) and (ix) hold by construction of D and F together with elementary properties of the
process Y . Condition (vii) holds by observing that β is the positive root of the characteristic
equation

η2

2 β(β − 1) + (r − δ)β − r = 0, (2.16)

whereas condition (vi) follows from a direct calculation.

Remark 1. Observe that our F (y) is the same as the function F (X) in equation (5) of [9] provided
one identifies our η(λ−ξ) with Grenadier’s (r−α), which follows from the fact that his stochastic
demand has a risk-neutral expected growth rate equal to α.

2.2. Leader Value

After exercising the investment option, the leader has no further decisions to take. Therefore, the
value of being the leader at a time t when the demand is y can be calculated directly from the
cash flows obtained from the underlying project from t onwards. Observe, however, that these
cash flows depend on the exercise decision of the follower: if y > YF , then it is optimal for the
follower to exercise at time t and the project will have the value D2y/δ given in (2.4). On the
other hand, if y ≤ YF the follower will wait to invest until

τF (y) = inf{s ≥ t : Y t,ys = YF } (2.17)
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and the project will have value

V L(y) = EQ
[ˆ τF

t

e−r(s−t)D1Y
t,y
s ds+

ˆ ∞
τF

e−r(s−t)D2Y
t,y
s ds

]
= D1EQ

[ˆ ∞
t

e−r(s−t)Y t,ys ds

]
+ (D2 −D1)EQ

[ˆ ∞
τF

e−r(s−t)Y t,ys ds

]
= D1y

δ
+ (D2 −D1)EQ

[
e−r(τF−t)EQ

[ˆ ∞
τF

e−r(s−τF )Y τF ,YFs ds

]]
= D1y

δ
+ (D2 −D1)YF

δ
EQ
[
e−r(τF−t)

]
= D1y

δ
− (D1 −D2)YF

δ

(
y

YF

)β
, (2.18)

where we used the well-known expression for the Laplace transform of (τF−t). We can summarize
these observations as follows:

Proposition 2. Provided δ = η(λ− ξ) > 0, the value of becoming a leader at a demand level y
is

L(y) =


D1y

δ
− (D1 −D2)

D2

Kβ

β − 1

(
y

YF

)β
−K if y ≤ YF ,

D2y

δ
−K if y > YF .

(2.19)

Moreover, the value obtained by both firms from simultaneous exercise at a demand level y is

S(y) = D2y

δ
−K. (2.20)

Proof. Becoming a leader at demand level y means paying the investment cost K in exchange of
a project with value either equal to D2y/δ if y > YF or equal to V L(y) given in (2.18) if y ≤ YF ,
which proves (2.19). Notice that this corresponds to the situation where one of the firms invests
at this level of demand while the other adopts the optimal strategy of a follower. Alternatively,
whenever both firms invest simultaneously they each pay the investment cost K in exchange of
a project with value equal to D2y/δ, which proves (2.20).

Remark 2. Our functions L(y) and S(y) coincide with the functions L(X) −K and S(X) −K
in equations (9) and (10) of [9] under the same identification discussed in Remark 1. Observe,
however, that we derived the value of being a leader directly from the cash flows obtained from
the underlying project, without having to solve the differential equation (7) in [9]. This approach
has advantages when we extend the model to incomplete markets in Section 3.
Remark 3. We chose to treat the stochastic demand (Yt) as the state variable, primarily because
we wanted a direct comparison with the setting in Grenadier [9]. The analysis in Bensoussan et
al. [2], on the other hand, uses the underlying project value (Vt) itself as the state variable. In a
complete market, these formulations are equivalent, since we easily move back and forth between
the two simply by calculating the discounted expected value of all future cash flows generated by
the project. This is because market completeness implies that there is a unique way to compute
expectations and to do the discounting, namely through the unique risk-neutral measure Q and
using the risk-free rate r, as in the calculation leading to (2.4) for example. If we identify the
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project value in [2] as corresponding to the situation with just one firm present in the market (i.e,
with the inverse demand function equal to D1), then a similar calculation shows that the project
value for the follower obtained in (2.4) satisfies V F (Yt) = (1− a)Vt, with a := (D1 −D2)/D1.

2.3. Equilibrium Strategies

The purpose of this section is to derive an equilibrium strategy for both firms based on the values
just calculated. We start with the following technical proposition, which was stated without proof
in Grenadier [9]. The proof which we present in Appendix B is a fuller version of a similar proof
in the Appendix of [8], adapted to our purposes.

Proposition 3 (Grenadier (2000)). There exists a unique point YL ∈ (0, YF ) such that
L (y) < F (y) for y < YL,

L (y) = F (y) for y = YL,

L (y) > F (y) for YL < y < YF ,

(2.21)

and {
S(y) < min (L (y) , F (y)) for y < YF ,

S(y) = F (y) for y ≥ YF .
(2.22)

We will now focus on symmetric, Markov, sub-game perfect equilibrium exercise strategies.
To do so in our continuous-time setting we use the method of Thijssen et al. [15] which extended
the original ideas of Fudenberg and Tirole [7] to a stochastic setting. The main idea is to set up
a combined timing/coordination game, where the first-stage timing game is in continuous-time,
while the discrete-time coordination stage is used to resolve priority when both firms want to
invest at the same instant. A complementary treatment is given in [5,14].

Formally, the time domain is extended to index pairs (t, z) ∈ T ≡ R+×Z+ where t represents
the continuous “process time,” and z counts the discrete rounds of a coordination game. The
information filtration F ≡ (Ft,z) now relies on the lexicographic ordering ≤L, Ft,z ⊆ Ft′,z′ ⊆ F
whenever (t, z) ≤L (t′, z′) ∈ T and the underlying stochastic process is extended to Y(t,z) := Yt.
A simple strategy is a pair of F-adapted processes (Gi(t,z), p

i
(t,z)) with (Gi(t,z), p

i
(t,z)) ∈ [0, 1] ×

[0, 1] for all (t, z) ∈ T , and Gi(t,z) a non-decreasing càdlàg process (see [7]). The interpretation
of Gi(t,z) is as the cumulative probability of firm i exercising by instant (t, z), whereas pi(t,z)
denotes the probability of exercising in a coordination stage game described below. We focus
on instantaneously-stationary Markovian strategies with pi(t,z) ≡ pi(Yt). In the option exercise
game with a Markov underlying state variable (Yt) we may without loss of generality focus on
hitting-time strategies, such that Git = Gi(t,z) = 1{t≤τ(yi)}, where τ(yi) = inf{t ≥ 0 : Yt ≥ yi} is
the first hitting time by (Yt) of the half-interval [yi,∞).

We now consider the timing game starting at initial point Y0 = y. Based on Proposition 3,
there are three different regions to consider. If y < YL, neither firm wants to invest and both
wait for the demand to rise. If y > YF , both firms want to invest and it does not matter who is
the leader or the follower, because the second firm will exercise the option to invest immediately
after the first.

The interesting region is YL ≤ y ≤ YF , where according to Proposition 3 each firm prefers
to be the leader, but at the same time both firms are worse off by investing simultaneously
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Fig. 2. Differences in values for leader, follower and simultaneous exercise. With the same parameters used in
Figure 1, we have YL = 0.37 and YF = 1.83.

than being the follower, as can be seen in Figure 2. This is precisely the situation where the
coordination game is played, with the z-th round at “time” (0, z) having payoffs

Invest Wait

Invest (S(y), S(y)) (F (y), L(y))

Wait (L(y), F (y)) Repeat

In this infinite 2-by-2 game, two stationary strategy types are possible. The case where ∆Gi0 >
0 with

∆Git := Git − lim
s↗t

Gis, (2.23)

and pi(y) = 0 corresponds to a one-shot strategy, where firm i attempts to exercise the option
“once” (that is, at (0, 0)) with probability ∆Gi0 and then waits infinitesimally. The case when
pi(y) > 0 means that at each stage (0, z), firm i will exercise with probability pi(y).

For an initial condition YL < y < YF , it follows from right-continuity of Gi that only
the coordination game using pi(y)’s is possible. Given a mixed strategy (p1(y), p2(y)) with
max(p1(y), p2(y)) > 0, at least one firm will immediately exercise a.s., and the probabilities



November 28, 2012 14:30 DRAFT

10 M.R. Grasselli, V. Leclère, M. Ludkovski

of the three possible outcomes are

a1(y) = p1(y)(1− p2(y))
p1(y) + p2(y)− p1(y)p2(y) (firm 1 exercises),

a2(y) = (1− p1(y))p2(y)
p1(y) + p2(y)− p1(y)p2(y) (firm 2 exercises),

aS(y) = p1(y)p2(y)
p1(y) + p2(y)− p1(y)p2(y) (simultaneous exercise).

These probabilities are computed by adding the corresponding probabilities for each round of
the infinite game, for example:

a1(y) = p1(y)(1−p2(y))+p1(y)(1−p1(y))(1−p2(y))2 + . . . =
∞∑
k=1

p1(y)(1−p1(y))k−1(1−p2(y))k.

(2.24)
Thus, the expected payoff for firm 1 when YL < y < YF is

E1 (y; p1, p2) = a1(y)L (y) + a2(y)F (y) + aS(y)S (y) , (2.25)

and similarly for firm 2. Maximizing (2.25) with respect to p1 subject to p1 = p2, we find that
the unique symmetric Nash equilibrium of the stage game is given by

p̂(y) = L(y)− F (y)
L(y)− S(y) , YL < y < YF . (2.26)

It follows that the probability of simultaneous investment for a given demand y ∈ (YL, YF ) is

aS(y) = L(y)− F (y)
L(y) + F (y)− 2S(y) , (2.27)

and the probability of sequential investment with firm i emerging as the leader is given by

aseq(y) = 1
2(1− aS(y)) = F (y)− S(y)

L(y) + F (y)− 2S(y) . (2.28)

Figure 3 illustrates the behaviour of these probabilities.
Remark 4. We could alternatively skip the “extensive-form” description of the stage game above
and simply postulate directly that, if both firms wish to exercise at the same time, then the
expected payoff for firm 1 would be of the form E1(y) = a1(y)L(y) + a2(y)F (y) + aS(y)S(y) for
some triple a1(y) + a2(y) + aS(y) = 1, and similarly for firm 2. This “normal-form” approach
avoids the need to define the extended time index T , but provides no explicit mechanism to
determine the a(y)’s, relying instead on economic principles such as rent equalization (see for
example [7] or [14, Section 4]).

Let us now consider what happens at the end-points of the interval (YL, YF ). L’Hôpital’s
rule gives that p̂(YF−) = 1 so that both firm exercise simultaneously at YF . The situation at
YL is more involved and corresponds to one of the subtleties of a continuous-time formulation.
First observe that p̂(YL+) = 0 which implies that a1(YL) = a2(YL) = 1

2 . Next note that at the
stopping time τ(YL) = inf{t : Yt = YL}, we have that Giτ(YL)− = 0 and Giτ(YL) = 1, so that
∆Gi(τ(YL)) = 1 even though pi(YL) = 0. The key is that inf{t : Yt > YL} = τ(YL) and in
equilibrium pi(y) > 0 for all y > YL, so at least one of the two firms will exercise immediately
after τ(YL). Thus, at YL each firm becomes the leader with probability 1/2 and exercises the
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Fig. 3. Optimal probability p̂(y) for each firm to exercise and probability aS of simultaneous exercise by both
firms. Parameter values are the same as in Figure 1.

option, while the other becomes the follower and postpones exercise until the demand rises to
YF .

The equilibrium strategies just introduced can be summarized in the next theorem, which
extends the result first established in [9]:

Theorem 4. There exists a symmetric, Markov, sub-game perfect equilibrium with strategies
depending on the level of demand as follows:

(i) If y < YL, both firms wait for the demand to rise and reach YL.
(ii) At y = YL, there is no simultaneous exercise and each firm has an equal probability of emerging

as a leader while the other becomes a follower and waits until demand rises to YF .
(iii) If YL < y < YF , each firm chooses a mixed strategy consisting of exercising the option to invest

with probability p̂(y). The resulting equilibrium yields simultaneous exercise with probability
aS(y) given in (2.27) and the case where one firm emerges as the leader and the other waits
until demand rises to YF with probability (1− aS(y)).

(iv) If y ≥ YF , both firms invest immediately.

We conclude this section showing that the optimal probability p̂ corresponds to the probability
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that makes each firm indifferent between being the follower or playing the game described above,
which is a restatement of the concept of rent equalization from Fudenberg and Tirole [7] that
implies that in equilibrium the timing value of the leader option completely vanishes due to
strategic preemption.

Proposition 5 (Rent equalization). The equilibrium described in Theorem 4 makes the expected
payoff for each firm to be equal to F (y) for all y ∈ [0,∞).

Proof. Observe that, because the firms are symmetric, they have equal probabilities of emerging
as the leader when sequential exercise occurs in the critical region YL < y < YF . Therefore, the
expected payoff for each firm as a function of demand is

F (y) if 0 ≤ y < YL,
1
2 (L(YL) + F (YL)) if y = YL,
1
2 (1− aS(y)) (F (y) + L(y)) + aS(y)S(y) if YL < y < YF ,

S(y) if y ≥ YF .

(2.29)

Using the expression for the probability of simultaneous exercise in (2.27) gives the result.

2.4. Priority Option Value

We have assumed so far that the roles of leader and follower are not predetermined, but rather the
outcome of the equilibrium strategies described in Theorem 4. Alternatively, we could consider
a Stackelberg game where the roles of the firms are predetermined exogenously. A problem of
this type was treated in Bensoussan et al. [2], where it was argued that the advantageous role of
being a leader can be determined, for example, by regulations or competitive advantages. Our
purpose in this section is to obtain a value for this advantage, which we call the priority option.

For this, assume as in [2] that the roles of leader and follower are predetermined. In other
words, the leader has the option to invest in the project knowing that the follower is forbidden
to invest until the leader has done so. That is, the leader can invest in the project at a random
time τ and receive the payoff L(Yτ ) according to (2.19). Therefore, the value function for the
leader in this case is

Lπ(y) = sup
τ∈T

EQ [e−rτL(Y 0,y
τ )+1{τ<∞}

]
, (2.30)

where the superscript π is meant to indicate that the leader now has the priority to invest. As
before, the dynamic programming equation associated with this optimal stopping problem is

min
(
rLπ − η2

2 y
2(Lπ)′′ − (r − δ)y(Lπ)′, Lπ − L+

)
= 0. (2.31)

As in [2], the fact that the leader anticipates the rational exercise decision by the follower
at the threshold YF yields a payoff function that is C0(0,∞) but not C1(0,∞). Indeed, we find
that

L′(y) =


D1

δ
− (D1 −D2)β

δ

(
y

YF

)β−1
if y < YF ,

D2

δ
if y ≥ YF ,

(2.32)
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so that

L′(YF−) = D1

δ
− (D1 −D2)β

δ
<
D2

δ
= L′(YF+). (2.33)

We also have that L is strictly concave for 0 ≤ y < YF , since

L′′(y) = − (D1 −D2)β(β − 1)
δYF

(
y

YF

)β−2
< 0. (2.34)

Finally, it is relatively straightforward to show that it satisfies the bounds
D2y

δ
−K ≤ L(y) ≤ D2y

δ
. (2.35)

We therefore conclude that our obstacle L(y) has the same properties as the obstacle Ψ(v) in
[2], which implies that our value function Lπ(y) inherits the properties of their value function. In
particular, the polynomial bounds in (2.35) allow us to use a verification argument to establish
that the value function is smoother than the obstacle itself, as shown in the next theorem. Before
we state the result, let us define the constants Y1 and A1 as

Y1 := δKβ

D1(β − 1) , (2.36)

A1 := 1
Y β1

K

β − 1

(
D2

D1

)β [(
D1

D2

)β
− β

(
D1

D2

)
+ β

]
, (2.37)

and the constants Y2, Y3, A2, A3 as a solution of the nonlinear system of equations

A2Y
β

2 +A3Y
β1

2 = D1Y2

δ
− (D1 −D2)YF

δ

(
Y2

YF

)β
−K,

βA2Y
β−1

2 + β1A3Y
β1−1

2 = D1Y2

δ
− (D1 −D2)βYF

δ

(
Y2

YF

)β
,

A2Y
β

3 +A3Y
β1

3 = D2Y3

δ
−K,

βA2Y
β−1

3 + β1A3Y
β1−1

3 = D2Y3

δ
.

(2.38)

Theorem 6. Let Y1 and A1 be given by (2.36) and (2.37) and assume that the nonlinear system
(2.38) has a unique solution given by the constants Y2, Y3, A2, A3. If

0 < Y1 < Y2 < YF < Y3, (2.39)

then the solution to (2.30) is given by

Lπ(y) =


A1y

β if 0 ≤ y < Y1,

L(y) if Y1 ≤ y ≤ Y2,

A2y
β +A3y

β1 if Y2 < y < Y3,

L(y) if y ≥ Y3,

(2.40)

where β and β1 are the positive and negative roots of the characteristic equation (2.16).

Proof. We proceed again by verifying the conditions in Theorem 13. Set

D = (0, Y1) ∪ (Y2, Y3), (2.41)
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and consider the matching and smooth pasting conditions

Lπ(Yi) = L(Yi), (2.42)
(Lπ)′(Yi) = L′(Yi), (2.43)

for i = 1, 2, 3. Observe that Y1 and A1 in (2.36) and (2.37) correspond to (2.42) and (2.43) with
i = 1, whereas the nonlinear system (2.38) corresponds to (2.42) and (2.43) with i = 2, 3. We then
see that Lπ ∈ C1(G) ∩ C(G) and Lπ ∈ C2(G\∂D) with locally bounded second order derivative
near ∂D, so conditions (i) and (v) are satisfied. Conditions (ii), (iii), (iv), (viii) and (ix) hold
by construction of D and Lπ and elementary properties of the process Y . Condition (vii) holds
by observing that β and β1 are the positive and negative roots of the characteristic equation
(2.16), whereas condition (vi) follows from a direct calculation using the explicit expression for
L in (2.19).

Although in general (2.38) does not have an explicit solution, we can easily solve it numerically
and verify whether condition (2.39) is satisfied in practice for given values of the underlying
parameters.

The obstacle L(y) and the function Lπ(y) are shown in Figure 4. We see that the optimal
investment strategies for a predetermined leader and follower are as follows:

(i) For 0 ≤ y < Y1 the leader waits to invest until the demand rises to y ≥ Y1 and the follower
waits to invest until the demand rises to y ≥ YF .

(ii) For Y1 ≤ y ≤ Y2 the leader invests immediately and the follower waits to invest until the
demand rises to y ≥ YF .

(iii) For Y2 < y < Y3 the leader waits until either the demand drops to y ≤ Y2, in which case
the follower waits to invest until it rises to y ≥ YF , or the demand rises to y ≥ Y3, in which
case the follower exercises immediately since y ≥ YF .

(iv) For y ≥ Y3 both the leader and the follower invest immediately.

Notice that Y1 given in (2.36) coincides with the exercise threshold for a monopolistic firm
when the cash flow per unit of demand is D1. In other words, when the initial demand is low, the
priority option allows the leader to act as a monopolistic firm and ignore the follower’s actions.

Furthermore, observe that at y = Y1 we have

L(Y1)− F (Y1) = K

β − 1

(
D2

D1

)β [(
D1

D2

)β
− β

(
D1

D2

)
+ β − 1

]
> 0, (2.44)

since β > 1 and D1 > D2. It then follows that YL < Y1, which shows that the priority option
delays the investment decision for the leader. All this suggests that the priority option can be
quite valuable. To compute its actual value, we proceed as follows.

According to Proposition 5, the expected payoff for each firm when the roles of leader and
follower are not predetermined is F (y) for all values of y. The premium π for the priority option,
which we assume to be offered only at time 0, first to one firm (randomly chosen) and then, if
declined, to the other, is given by the next proposition, whose proof follows by direct substitution
of the values calculated in Theorem 6 and Proposition 5. The priority option value is illustrated
in Figure 5.
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Fig. 4. Obstacle problem with predetermined roles, showing the value function Lπ for the predetermined leader,
the payoff L obtained upon investment, and the corresponding value function F for the follower. Parameter values
are the same as in Figure 1, which results in Y1 = 0.64, Y2 = 1.22 and Y3 = 3.50.

Proposition 7. The value of π(y) = Lπ(y)− F (y) of the priority option is given by

π(y) =



[(
D1

D2

)β
− β

(
D1

D2

)
+ β − 1

]
K

β − 1

(
y

YF

)β
if 0 ≤ y < Y1,

D1

δ
y −K −

[
β

(
D1

D2

)
− β + 1

]
K

β − 1

(
y

YF

)β
if Y1 ≤ y < Y2,(

A2Y
β
F −

K

β − 1

)(
y

YF

)β
+A3y

β1 if Y2 ≤ y < YF ,

A2y
β +A3y

β1 − D2y

δ
+K if YF ≤ y < Y3,

0 if Y3 ≤ y.

(2.45)

Fig. 5. Priority option value π = Lπ − F . Parameter values are the same as in Figure 1.

As we have just argued, the value of being a predetermined Leader for the firm that buys the
priority option is Lπ. We now compute the value of the other firm, the predetermined Follower,
denoted by Fπ. When the roles were not pre-determined, the follower value F was found in
Section 2.1 through a standard approach of maximizing expected cash flow over all possible
investment strategies. However, with a priority option, the Follower is constrained to first wait
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for the Leader to invest. The following Lemma provides the structure of Fπ:

Lemma 8. We have

Fπ(y) =



F (Y1)
(
y
Y1

)β
if 0 < y ≤ Y1,

K
β−1

(
y
YF

)β
if Y1 < y < Y2,

F (Y2)
(
y
Y2

)A (Y3
y )B−(Y3

y )−B(
Y3
Y2

)B
−
(
Y3
Y2

)−B + F (Y3)
(
y
Y3

)A ( y
Y2

)B
−
(
y
Y2

)−B(
Y3
Y2

)B
−
(
Y3
Y2

)−B if Y2 ≤ y < Y3,

D2y
δ −K if Y3 ≤ y,

(2.46)

with

A = 1
2 −

r − δ
η2 ,

B =
√
A2 + 2r

η2 = β −A.

Proof. Given the initial project value Y0 = y, four cases must be considered. First, if y ≤ Y1, the
Leader will invest as soon as Yt ≥ Y1. Consequently,

Fπ(y) = EQ
y

[
e−rτ1

]
F (Y1) = F (Y1)

(
y

Y1

)β
. (2.47)

Next, if Y1 ≤ y ≤ Y2, the Leader invests immediately and

Fπ(Y ) = F (Y ) = K

β − 1

(
y

YF

)β
. (2.48)

Third, suppose that Y2 < y < Y3. This is the most complicated case. Indeed, the Leader will
delay investment until the exit time τH defined by

τH = inf {t ≥ 0 : Yt /∈ (Y2, Y3)} . (2.49)

At the investment time τH , the value of the Follower would be F (YτH ). Hence, his expected value
at t = 0 is

Fπ(y) = F (Y2)EQ
y

[
e−rτH1{YτH=Y2}

]
+ F (Y3)EQ

y

[
e−rτH1{YτH=Y3}

]
. (2.50)

Using the formula for the Laplace transform of a two-sided exit time of a geometric Brownian
motion Yt = ye(µ− 1

2ν
2)t+νWQ

t , we obtain the expression on the third line of (2.46).
Finally, if y ≥ Y3, Leader invests immediately at t = 0 and since y ≥ Y3 > YF , the Follower

invests immediately afterwards, leading to Fπ(y) = F (y) = D2y/δ −K.

We note that Fπ(y) = F (y) on y ∈ [Y1, Y2]∪ [Y3,∞), but is strictly smaller Fπ(y) < F (y) on
y ∈ (0, Y1)∪ (Y2, Y3). In the former case, the priority option causes the predetermined follower to
lose value from potentially winding up a leader, while in the latter case the priority option causes
the predetermined follower to postpone investment until Yt /∈ [Y2, Y3], which may be sub-optimal
(and strictly sub-optimal when y > YF and the follower wishes to invest immediately).
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Fig. 6. Value Fπ for a predetermined follower compared with the follower value F obtained when roles are not
predetermined. Parameter values are the same as in Figure 1.

3. Option to invest in incomplete markets

We consider again two firms with the option to invest in the project for a sunk cost of K but
now drop the assumption of a complete market. Indeed, many real options involve non-traded
underlying assets, such as real estate prices, pharmaceutical developments, etc. As observed
in Remark 3, in the complete market case we can equivalently choose either the stochastic
demand (Yt) or the project value (Vt) as the state variable and convert one into another through
expected value of discounted cash flows. In incomplete markets this is more delicate, since cash
flows received at different times cannot be easily compared. In this section we follow one of the
approaches used in [2] and treat project values as lump-sum payoffs instead of present values of
future cash flows and compare payoffs at different times using certainty equivalent arguments
in the context of optimal utility of terminal wealth. The alternative, also considered in [2], of
dealing with instantaneous cash flows associated with the stochastic demand in the context of
optimal utility of consumption will not be pursued here.

Accordingly, the project value Vt is now assumed to be partially correlated with a traded
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asset Pt as follows:
dVt
Vt

= νdt+ η(ρdWt +
√

1− ρ2dW 0
t ), (3.1)

dPt
Pt

= µdt+ σdWt, (3.2)

where ρ ∈ (−1, 1) is a constant and (W 0
t ) is a Brownian motion independent of (Wt). Observe

that the dynamics takes place under the physical measure P and that (3.1) reduces to a complete
market in the limit ρ → 1. The case ρ → −1 also corresponds to a complete market, with the
obvious modifications in the corresponding hedging strategies.

For a monopolistic firm, investing in the project at time t means receiving a lump sum equal
to Vt. In the duopoly case considered here, if a firm invests after another firm has already invested
it receives a reduced lump sum equal to (1 − a)Vt, for some 0 < a < 1, whereas the other firm
keeps a fraction bVt of the original project value, with 0 < b < 1. Setting b = a corresponds
to the framework of [2], where the total project value remains the same and is divided between
the two firms according to the proportions a and 1 − a. Setting b = (1 − a) is analogous to the
framework used in Section 2, with the total project value in the presence of both firms becoming
(1− a+ b)Vt and being divided equally between the firms.

Next we assume that both firms act as utility maximizing agents with an exponential utility
function

U(x) = −e−γx, (3.3)

where γ > 0 is the risk aversion coefficient. In addition to investing in the project, the firms can
allocate an amount θt to be invested at time t in the traded asset with price Pt. As usual in
this type of problems, we take the money market account as the numeraire, or equivalently, set
r = 0. In this way, the wealth associated with the trading strategy θ evolves according to

dXθ
t = θt

dPt
Pt

= θtσ(λdt+ dWt). (3.4)

For u ≥ t, we denote the solution of this equation starting at x at time t by Xt,x,θ
u .

3.1. Follower Value Function

As before, we denote a firm by L if it is the first to invest, by F if it is the second to invest, and
by S if both firms invest simultaneously, and consider first the case where these roles are not
predetermined.

Starting with the follower, given that one of the firms has already invested in the project, the
remaining firm has an option to invest in the project at a stopping time τ by paying the sunk
costa K and receive a lump sum (1 − a)Vτ , where 0 < a < 1. For an infinite maturity, this is
again a perpetual early-exercise option with payoff ((1− a)Vτ −K)+. However, since the market
is incomplete, we cannot value this option using risk neutral expectations as in (2.7). Instead,
we follow Henderson and Hobson [10] and define the value function for the follower as

f(x, v) = sup
(τ,θ)

E
[
e
λ2τ

2 U
(
X0,x,θ
τ +

(
(1− a)V 0,v

τ −K
)+
)]
. (3.5)

aBecause we use the bank account as the numeraire, or equivalently set r = 0, this corresponds to a sunk cost
that increases at a rate r in units of currency but is constant when expressed in units of the bank account.
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The choice of the discount factor eλ
2τ
2 is explained in the Appendix of [10] and leads to a horizon

unbiased optimization problem. It then follows from [10] that if we set

β ≡ β(ρ) := 1 + 2(ρλ− ξ)
η

> 1, (3.6)

and define VF = V ∗/(1− a), where V ∗ ≡ V ∗(ρ) is the solution to the nonlinear equation

κ(V ∗ −K) = log
[
1 + κV ∗

β

]
, κ := γ(1− ρ2), (3.7)

then (1− a)VF > K and the follower value function is given by f(x, v) = −e−γ(x+F (v)), where

F (v) =

− 1
κ log

[
1−

(
1− e−κ((1−a)VF−K)) ( v

VF

)β]
if 0 ≤ v ≤ VF ,

(1− a)v −K if v > VF .

(3.8)

3.2. Leader Value Function

As before, after investing in the project at time t at level v, the leader has no further decisions
to take. However, the value received by the leader upon investment must take into account that
the follower will also invest in the project at the stopping time

τF (v) = inf{u ≥ t : V t,vu ≥ VF }. (3.9)

If v > VF the follower invests immediately and receives a fraction (1− a)v of the project value,
so that the payoff for the leader is (bv − K), where 0 < b < 1 is a the fraction of the project
value received by the leader.

Conversely, if v ≤ VF then the follower will invest in the project at τF ≡ τF (v) > t and receive
(1 − a)V t,vτF − K. In the complete market case it was straightforward to take this into account
when calculating the project value for the leader in expression (2.18). For the incomplete market
case, we use the following argument along the lines of [2]. We represent the reduction in project
value experienced by the leader upon entrance of the follower as a lump sum loss (1− b)V t,vτF at
τF and consider its utility indifference value for the leader at time t. For this, and taking without
loss of generality t = 0, consider

h(x, v) = sup
θ

E
[
e
λ2τ

2 U
(
X0,x,θ
τF − (1− b)V 0,v

τF

)]
, (3.10)

which corresponds to utility the leader obtains by optimally allocating wealth over the interval
(0, τF ) in anticipation of the loss in project value at τF . Following the same steps as in [2], it is
straightforward to show that

h(x, v) = U(x)
[

1−
(

1− eκ(1−b)VF
)( v

VF

)β] 1
1−ρ2

, (3.11)

with β defined in (3.6). We then define the utility indifference value HF (v) for the reduction in
project value experienced by the leader through the equality

h(x−HF (v), 0) = h(x, v), (3.12)

from which it follows that

HF (v) = 1
κ

log
[

1−
(

1− eκ(1−b)VF
)( v

VF

)β]
. (3.13)
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Using HF (v), we can incorporate the expected reduction in project value at τF into the value
function `(x, v) = − exp(−γ(x+ L(v))) for the leader simply by setting

L(v) =
{
v −HF (v)−K if v ≤ VF ,
bv −K if v > VF .

(3.14)

It can be checked that limv↗VF HF (v) = (1− b)VF so that L(v) is continuous at v = VF .
Finally, when the firms are symmetric, they should receive the same project value when

exercising simultaneously. Imposing continuity of the value function for the leader and the follower
at VF requires that we choose b = 1−a as in Section 2, leading to a value function for simultaneous
exercise of the form s(x, v) = − exp(−γ(x+ S(v))), where

S(v) = (1− a)v −K. (3.15)

Remark 5. Our derivation of the value function for the leader differs from Bensoussan et al. [2]
in two respects. First, our reduction in project value for the leader is given as (1 − b)v for an
arbitrary factor 0 < b < 1, whereas [2] sets b = a, meaning that the leader experiences a reduction
in project value exactly equal to the lump sum received by the follower. Secondly, [2] considers
utility indifference arguments from the point of view of the follower, again implicitly assuming
that any amount received by the follower is subtracted from the total wealth of the leader. We
disagree with this approach and prefer to use the utility indifference of the leader directly since
the Stackelberg game involves no direct transactions between leader and follower.

3.3. Equilibrium Strategies

As in the complete market case, we start with a technical result comparing the value functions
obtained in the previous section.

Proposition 9. Setting (1− a) = b, assume that b∗1 < b < 1 where b∗1 satisfies

b∗1

(
1− e

−κ
(
V ∗
b∗1
−K
))

= 1− e−κ(V ∗−K). (3.16)

In addition, if κV ∗ < β, assume that b∗2 < b < 1, where b∗2 satisfies

e
−κ
(
V ∗
b∗2
−K
)

= 2e−κ(V ∗−K) − 1. (3.17)

Then there exist a unique point VL such that
L(v) < F (v) for v < VL,

L(v) = F (v) for v = VL,

L(v) > F (v) for VL < v < VF ,

(3.18)

and {
S(v) < min (L(v), F (v)) for v < VF ,

S(v) = F (v) for v ≥ VF .
(3.19)
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Proof. For any v < VF , let

d1(v) := L(v)− F (v) = v −K + 1
κ

log

1− C1

(
v
VF

)β
1− C2

(
v
VF

)β
 .

where

C1 :=
(

1− e−κ((1−a)VF−K)
)
, C2 :=

(
1− eκaVF

)
. (3.20)

Observe first that d1(0) = −K < 0 and d1(VF ) = 0. It is also easy to see that d1(v) is continuously
differentiable with

d′1(v) = 1 + 1
κ

βvβ−1

V βF

C2 − C1

(1− C1

(
v
VF

)β
)(1− C2

(
v
VF

)β
)
, (3.21)

so that we have

d′1(VF ) = 1 + 1
κ

β

VF

C2 − C1

(1− C1)(1− C2)

= 1 + 1
κ

β

VF

e−κ(VF−K) − 1
e−κ((1−a)VF−K)

= 1− βb

κV ∗
1− e−κ(V ∗b −K)

e−κ(V ∗−K)

= 1−
b
(

1− e−κ(V ∗b −K)
)

1− e−κ(V ∗−K) < 0,

since b > b∗1 defined in (3.16). Finally, we have that

d′′1 (v) = 1
κ

βvβ−1

V βF

C2 − C1(
1− C1

(
v
VF

)β)(
1− C2

(
v
VF

)β) (3.22)

×

β − 1
v

+
C1β

vβ−1

V β
F

1− C1

(
v
VF

)β +
C2β

vβ−1

V β
F

1− C2

(
v
VF

)β
 . (3.23)

To determine the sign of this second derivative, observe first that VF > (1 − a)VF > K implies
that

C2 − C1 = eκaVF
(
e−κ(VF−K) − 1

)
< 0, (3.24)

so that the factor appearing in (3.22) is always strictly negative. For the remaining expression,
observe that if κV ∗ > β holds, then

2e−κ(V ∗−K) − 1 < 0 < e−κ(V ∗b −K), (3.25)

for any 0 < b < 1. Conversely, if κV ∗ < β and b > b∗2, we have that

2e−κ(V ∗−K) − 1 < e−κ(V ∗b −K), (3.26)
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since b∗2 is defined by (3.17) and the map b → e−κ(V ∗b −K) is increasing. In either case we find
that

C1 + C2 = 2C1C2 + eκaVF
[
1− 2e−κ((1−a)VF−K) + e−κ(VF−K)

]
= 2C1C2 + eκaVF

[
1− 2e−κ(V ∗−K) + e−κ(V ∗b −K)

]
> 2C1C2,

which in turn implies the following chain of inequalities

C1 + C2 > 2C1C2

(
v

VF

)β
⇐⇒ C1

[
1− C2

(
v

VF

)β]
> −C2

[
1− C1

(
v

VF

)β]

⇐⇒
C1β

vβ−1

V β
F

1− C1

(
v
VF

)β > − C2β
vβ−1

V β
F

1− C2

(
v
VF

)β
⇐⇒

C1β
vβ−1

V β
F

1− C1

(
v
VF

)β +
C2β

vβ−1

V β
F

1− C2

(
v
VF

)β > 0.

Since β > 1, we conclude that the expression inside the square brackets in (3.23) is always
positive, which implies that d1 is strictly concave on v ∈ (0, VF ). We conclude that there exist
a unique root VL < VF for d1(v) in the interval [0, VF ]. A similar calculation using d2(v) :=
S(v)− F (v) concludes the proof.

The behaviour of the incomplete market thresholds VL and VF with respect to risk aversion
is illustrated in Figures 7 and 8. In both figures we see that higher risk aversion diminishes the
follower’s option value for waiting, which implies that VF decreases in γ. However, for VL there
are two effects in play, preemption and risk aversion, and their interaction is ambiguous. Indeed,
when risk aversion is close to zero, the situation is similar to the complete market analyzed in
Section 2: once a leader invests, a rational follower waits until VF ; the benefits of being alone in
the market make preemption the dominating effect and give rise to a low investment threshold
VL for the leader. As risk aversion increases, the leader weighs the loss of project value due to the
subsequent entrance by the follower more heavily, resulting in a lower leader value L in (3.14).
Since VL is defined by L(VL) = F (VL), its exact behavior depends on how fast the follower value
F in (3.8) decreases with risk aversion. Ultimately, for high enough values of risk aversion, both
Figures 7 and 8 show that VL coincides with VF , meaning that any remaining advantage of being
a leader disappears.

As before, we will focus on symmetric, Markov, sub-game perfect equilibrium exercise strate-
gies. In particular, we assume that both firms have the same level of initial wealth x and the same
utility function. These assumptions are relaxed in Appendix C, where we offer some remarks on
how to treat an example of an asymmetric case. According to the previous proposition, if v < VL,
neither firm wants to invest and both wait for the project value to rise, whereas if v > VF , both
firms invest immediately.

For the region VL < v < YF , both firms wish to be the only investor and we consider again a
mixed strategy in the instantaneous stage game consisting of exercising the option to invest with
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Fig. 7. Leader and Follower investment thresholds in the incomplete market case, when a = 0.2. Parameters are
the same as Figure 1, with ρ = 0.8.

stationary probabilities pi(v) and pj(v) and the three possible outcomes described immediately
before equation (2.23). The expected utility for firm i is then

Ui (x, v; pi, pj) =
[
pi(1− pj)`(x, v) + pj(1− pi)f(x, v) + pipjs(x, v)

] ∞∑
k=0

(1− pi)k(1− pj)k

= pi(1− pj)`(x, v) + pj(1− pi)f(x, v) + pipjs(x, v)
1− (1− pi)(1− pj)

. (3.27)

Again, firm i wants to maximize this expected value with respect to pi knowing that firm j can
choose the same strategy. A calculation similar to the complete market case then leads to the
following optimal probability to invest (independent of x):

p̂(v) = `(x, v)− f(x, v)
`(x, v)− s(x, v) = L(v)− F (v)

L(v)− S(v) . (3.28)

Equilibrium strategies for the two firms can now be characterized analogously to the complete
market case:

Theorem 10. Assume that the hypotheses in Proposition 9 hold and that both firms have the
same initial wealth x and risk aversion γ. Then there exists a symmetric, Markov, sub-game
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Fig. 8. Leader and Follower investment thresholds in the incomplete market case, when a = 0.5. Parameters are
the same as Figure 1, with ρ = 0.8.

perfect equilibrium with strategies depending on the level of demand as follows:

(i) If v < VL, both firms wait for the project value to rise and reach VL.
(ii) At v = VL, there is no simultaneous exercise and each firm has an equal probability of

emerging as a leader while the other becomes a follower and waits until the project value
rises to VF .

(iii) If VL < v < VF , each firm chooses a mixed strategy consisting of exercising the option to
invest with probability p̂(v). There can be an equilibrium with simultaneous exercise with
probability

aS(v) = L(v)− F (v)
L(v) + F (v)− 2S(v) , (3.29)

and an equilibrium where one firm emerges as the leader and the other waits until demand
rises to VF with probability (1− aS(v)).

(iv) If v ≥ VF , both firms invest immediately.

As in the complete market case, the same argument used to establish Proposition 5 shows
that the mixed strategies described above lead to each firm being indifferent between being the
follower or playing the game:
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Proposition 11 (Rent Equalization). The equilibrium described in Theorem 10 makes the ex-
pected utility for each firm to be equal to f(x, v).

3.4. Priority to Invest

As in Section 2.4, we assume now that the roles of leader and follower are predetermined. In other
words, the leader has the option to invest in the project knowing that the follower is forbidden
to invest until the leader has done so. That is, the leader can invest in the project at a random
time τ and receive the value function `(Xτ , Vτ ) = − exp(−γ(Xτ + L(Vτ ))) according to (3.14).
Therefore, the value function for the leader in this case is

`π(x, v) = sup
τ,θ

E
[
e
λ2τ

2 U(X0,x,θ
τ + L(V 0,v

τ )+)1{τ<∞}
]
, (3.30)

where the superscript π is meant to indicate that the leader now has the priority to invest. As it
is well known (see for example [10] or [11]), the dynamic programming equation associated with
the combined optimal stopping and optimal control problem (3.30) is the following nonlinear
variational inequality:

min
(
−1

2λ
2`π − 1

2η
2v2`πvv − νv`πv + (ρσηy`πxv + µ`πx)2

2σ2`πxx
, `π − U(x+ L(v)+)

)
= 0. (3.31)

Following [16], we set

`π(x, v) = −U(x)Σ
1

1−ρ2 (v) = e−γxΣ
1

1−ρ2 (v) (3.32)

and obtain an equation that is linear in the derivatives of Σ:

min
(
−1

2η
2v2Σ′′ −

(
ν − ρηµ

σ

)
v,Σ + e−κL(v)+

)
= 0. (3.33)

By its turn, (3.33) is the dynamic programming equation associated with the optimal stopping
problem

Σ(v) = sup
τ∈T

Ẽ
[
−e−κL(V 0,v

τ )+
]
, (3.34)

where Ẽ[·] denotes the expectation with respect to the minimal martingale measure for this
problem (see [6]), under which the project value and the traded asset follow the dynamics

dVt
Vt

=
(
ν − ρηµ

σ

)
dt+ η(ρdWQ

t +
√

1− ρ2dW 0
t ), (3.35)

dPt
Pt

= σdWQ
t , (3.36)

with WQ = Wt + µ
σ t as before.

Since the obstacle Ψ(v) = − exp(−κL(v)+) in (3.34) is bounded, we can use verification to
obtain the solution presented in the next theorem. Before we state the result, let us define the
constants V1 and B1 as a solution to the system

−1 +B1V
β

1 = −e−κL(V1), (3.37)

βB1Y
β−1

1 = κe−κL(V1)L′(V1). (3.38)
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Substituting (3.37) into (3.38) we find that V1 satisfies the nonlinear equation

κL(V1) = log
[
1 + κ

β
V1L

′(V1)
]
. (3.39)

We show in Appendix D that (3.39) has a solution V1 in the interval (0, VF ) provided b > b∗3,
where

β − κ
(

1
b∗3
− 1
)
V ∗ = βe

−κ
(

1
b∗3
−1
)
V ∗

. (3.40)

Substituting V1 back into (3.37) gives the constant B1. Next define the constants V2, V3, B2, B3
as a solution to the nonlinear system

B2 +B3V
β

2 = −e−κL(V2),

βB3V
β1−1

2 = κe−κL(V2)L′(V2),

B2 +B3V
β

3 = −e−κL(V3),

βB3V
β1−1

3 = κe−κL(V3)L′(V3).

(3.41)

Theorem 12. Let V1 and B1 be given by (3.37) and (3.38) and assume that the nonlinear system
(3.41) has a solution (V2, V3, B2, B3). If

0 < V1 < V2 < VF < V3, (3.42)

then

Σ(v) =


−1 +B1v

β if 0 ≤ v < V1,

−e−κL(v) if V1 ≤ v ≤ V2,

B2 +B3v
β if V2 < v < V3,

−e−κL(v) if v ≥ V3,

(3.43)

where β ≡ β(ρ) is defined in (3.6).

Proof. We proceed once more by verifying the conditions in Theorem 13. Set

D = (0, V1) ∪ (V2, V3) (3.44)

and observe that the constants V1, V2, V3, B1, B2, B3 were defined so that the value matching and
smooth pasting conditions

Σ(Vi) = −e−κL(Vi), (3.45)

(Σ)′(Vi) = κe−κL(Vi)L′(Vi), (3.46)

are satisfied for i = 1, 2, 3. We then see that Σ ∈ C1(G)∩C(G) and Σ ∈ C2(G\∂D) with locally
bounded second order derivative near ∂D, so conditions (i) and (v) are satisfied. Conditions
(ii), (iii), (iv), (viii) and (ix) hold by construction of D and Σ and elementary properties of the
process (Vt). Condition (vii) holds by observing that β defined in (3.6) is the positive root of the
characteristic equation

1
2η

2β(β − 1) +
(
ν − ρηµ

σ

)
β = 0, (3.47)

whereas condition (vi) follows from a direct calculation using the expression for L in (3.14).
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The obstacle Ψ(v) and the function Σ(v) are shown in Figure 9. We see that for symmetric
firms, the optimal investment strategy for predetermined leader and follower are exactly the same
as in the complete market, namely:

(i) For 0 ≤ v < V1 the leader waits to invest until the project value rises to V1 and the follower
waits to invest until it rises to VF .

(ii) For V1 ≤ v ≤ V2 the leader invests immediately and the follower waits to invest until the
project value rises to VF .

(iii) For V2 < v < V3 the leader waits until either the project value drops to V2, in which case
the follower waits to invest until it rises to VF , or rises to V3, in which case the follower
exercises immediately since v ≥ VF .

(iv) For v ≥ V3 both the leader and the follower invest immediately.

Fig. 9. Obstacle problem in an incomplete market with predetermined roles, showing the value function Σ for
the predetermined leader, the payoff −e−κL obtained upon investment, and the corresponding value function
−e−κF for the follower. Parameter values are the same as in Figure 1, with ρ = 0.8 and γ = 0.1, which results in
VL = 13.76, V1 = 18.51, V2 = 25.65, VF = 32.89 and V3 = 41.06.

Just as in the complete market case, we define the value of the priority option as the premium
that a firm has to pay to acquire the right to be the leader. In the incomplete market setting,
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this is given by the value π ≡ π(x, v) that makes a firm indifferent between having initial wealth
(x− π) and achieving the expected utility of a predetermined leader or having the initial wealth
x and achieving the expected utility resulting from playing the game analyzed in Section 3.3.
Using Proposition 11, we find that π is the solution to

`π(x− π(x, v), v) = f(x, v). (3.48)

Substituting the expressions for `π and f we obtain

π(x, v) ≡ π(v) = 1
γ

log
[

e−γF (v)

−Σ1/(1−ρ2)(v)

]
. (3.49)

The qualitative behavior of the priority option value is similar to the complete market case
illustrated in Figure 5. In particular we see that π(v) = L(v) − F (v) for V1 ≤ v ≤ V2 where
`π(x, v) = `(x, v), and that π(v) = 0 for all v ≥ V3, since L(v) = F (v) = (1 − a)v −K in this
region.

4. Concluding Remarks

We have analyzed competitive investment for two symmetric firms in both complete and incom-
plete markets. When neither firm has a predetermined role, they play a timing/coordination
game with mixed strategies to decide when to invest in an underlying project subject to uncer-
tainty. Depending on the outcome of the game, investment can occur either sequentially, with
one firm emerging as the leader and the other as the follower, or simultaneously. When one of
the firms has been preassigned as the leader, it extracts a larger value from the project than the
expected value in the case of no preassigned roles. We call this difference the priority option and
calculate its value.

In the complete market case, the underlying state variable is a stochastic demand (Yt). Con-
firming the result obtained in [9], we find that when demand is below a threshold YL neither
firm has an incentive to invest in the project and both firms should wait for it to rise, whereas
when demand is above a higher threshold YF , it is optimal for both firms to invest immediately.
In the intermediate region (YL, YF ), both firms would prefer to be the first to invest, but simul-
taneous investment is strictly worse than being the second to invest, as illustrated in Figure 2.
The unique symmetric Nash equilibrium in this region consists of each firm investing according
to the optimal probability in (2.26). Our main contribution in this section is a rigorous analysis
of the behaviour at the end points YL and YF : at YF both firms invest simultaneously, whereas
at YL each becomes the leader with probability 1/2 and invests immediately, while the other
becomes the follower and postpones investment until the demand rises to YF .

Preassigning the roles of of each firm corresponds to the situation analyzed in [2], with the
leader value L(y) previously computed in (2.19) appearing as a payoff in the optimal control
problem (2.30) for the predetermined leader. The shape of this obstacle is illustrated in Figure
4 and yields the three-threshold form for the value function Lπ(y) in (2.40). As mentioned in
the Introduction, this leads to the existence of the interval [Y2, Y3], whereby the predetermined
leader waits until demand either rises to Y3 or drops to Y2 before investing. The phenomenon
of investment at falling demand (i.e, the existence of the threshold Y2) has been linked to a
“recession induced boom” in the context of real estate development analyzed in [8] in a model
with delay in building time. Our results show that the same phenomenon can arise from the
existence of a predetermined leader in the market. The actual advantage of being a leader is
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represented by the priority option value computed in Figure 5. We see that this advantage is not
monotonic with respect to the underlying demand, being negligible for both very low and very
high demand, but significant for intermediate values of demand.

Apart from technicalities, our analysis shows that the description above largely applies to
incomplete markets as well. The first technical difficulty concerns the comparison of cash flows
obtained at different times, which is straightforward in complete markets but requires subtle
utility-indifference arguments in incomplete one. We accordingly treat project values as lump
sums received at specific times, rather than accruing from continuous cash flows originated by
instantaneous demand. This allowed us to obtain the incomplete market analogues for the leader,
follower and simultaneous exercise values. Comparing these values, however, is significantly more
complicated than in complete markets. Under the sufficient conditions presented in Proposition
9, the exact analogue of Figure 2 holds: when the project value left for the leader upon entrance
of the follower is high enough, as measured by the constant b, there is a region [VL, VF ] where it
is strictly better to be a leader than to be a follower. Nonetheless, when risk aversion increases
these conditions become harder to satisfy and the existence of the lower threshold VL cannot be
guaranteed.

Assuming that the conditions of Proposition 9 are satisfied and that the firms are perfectly
symmetric, including having the same risk aversion, we find that the Nash equilibrium for the
game played in the region [VL, VF ] is entirely analogous to the case in complete markets. Finally,
the case of preassigned roles also generalizes to incomplete markets, with the same type of value
function for the predetermined leader given in terms of three distinct thresholds. As in complete
markets, the value of the priority option can be defined as the premium that needs to be paid to
acquire the right to be a predetermined leader, except that in incomplete markets this premium
is computed as an indifference value.

Appendix A. Variational inequalities for optimal stopping problems

For convenience, we reproduce Theorem 10.4.1 in [12] adapted to our problem. Let

dYt = b(Yt) + σ(Yt)dWt (A.1)

and g : R→ R be a continuous function satisfying

E
[

sup
0≤t<∞

|g(Yt)|
]
<∞. (A.2)

Consider the problem

Φ(y) := sup
τ∈T

E
[
e−rτg(Y 0,y

τ )1{τ<∞}
]
. (A.3)

Define the generator of the diffusion Y as

L = b(y) ∂
∂y

+ σ2(y)
2

∂2

∂y2 . (A.4)

We then have the following verification result:

Theorem 13. Let G = (0,∞), φ : G→ R and D = {x ∈ G : φ(x) > g(x)}. Suppose that

(i) φ ∈ C1(G) ∩ C(G),
(ii) φ ≥ g on G and φ = g on ∂G,
(iii) Yt spends 0 time on ∂D a.s.,
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(iv) ∂D is a Lipschitz surface,
(v) φ ∈ C2(G\∂D) and the second order derivative of φ is locally bounded near ∂D,
(vi) rφ− Lφ ≥ 0 on G\D,
(vii) rφ− Lφ = 0 on D,
(viii) τD(y) := inf{t > 0 : Y 0,y

t /∈ D} <∞ a.s. for all y ∈ G,
(ix) the family {φ(Y 0,y

τ ) : τ ≤ τD(y), τ ∈ T } is uniformly integrable for all y ∈ G.

Then

φ(y) = Φ(y) = sup
τ∈T

E
[
e−rτg(Y 0,y

τ )1{τ<∞}
]

y ∈ G (A.5)

and τ∗ = τD is an optimal stopping time for this problem.

Appendix B. Proof of Proposition (3)

For y ∈ (0, YF ), define the function d1(y) := L(y)− F (y), that is

d1(y) = D1y

δ
− (D1 −D2)

D2

Kβ

β − 1

(
y

YF

)β
−K − K

β − 1

(
y

YF

)β
= D1y

δ
− β(D1 −D2) +D2

D2

K

(β − 1)

(
y

YF

)β
−K.

Therefore,

d′1 (Y ) = D1

δ
− β(D1 −D2) +D2

δβ

(
y

YF

)β−1
;

d′′1 (Y ) = − [β(D1 −D2) +D2](β − 1)
δβYF

(
y

YF

)β−2
< 0,

so d1 is strictly concave. Moreover we have that

d1 (0) = −K < 0, d1 (YF ) = 0,

d′1(0) = D1

δ
> 0, d′1 (YF ) = (1− β)

δ
(D1 −D2) < 0.

Therefore, there is a unique value YL for which d1(YL) = 0 and such that d1(y) < 0 for y ∈ (0, YL)
and d1(y) > 0 for y ∈ (YL, YF ), as shown in Figure 2.

To conclude, it follows from the definition of S(y) and L(y) that S(y) −K < L(y) −K for
y < YF . Define now d2(y) := S(y)− F (y), that is

d2 (y) = D2y

δ
−K − K

β − 1

(
y

YF

)β
. (B.1)

We then have

d′2 (Y ) = D2

δ

[
1−

(
y

YF

)β−1
]
≥ 0;

d′′2 (Y ) = −D2(β − 1)
δYF

(
Y

YF

)β−2
< 0,

so that d2 is also strictly concave. Moreover,

d2 (0) = −K, d2 (YF ) = 0, d′2 (YF ) = 0, (B.2)

from which we can assert that S(Y ) < F (Y ) for Y < YF .



November 28, 2012 14:30 DRAFT

Priority option 31

Appendix C. An asymmetric example in incomplete markets

An example of asymmetric duopoly in a complete market has been extensively analyzed in
[3], where the asymmetry arises from different investment costs for the two firms. We consider
here an asymmetric case in incomplete markets where the risk-aversion of the two firms is not
the same. More fundamentally, the asymmetry could arise from different discount rates and/or
payoff functions, but the analysis is similar. Whichever the reason for asymmetry, all option
payoffs and value functions are now firm-dependent and are denoted by Li(v), Fi(v), etc, but it
can be straightforwardly shown that there still exist thresholds V iL, V iF as before. We note that
the leader value Li(v) depends on the follower threshold V jF of the other firm.

For concreteness, suppose that firm 1 is less risk-averse (smaller γ). As can be seen in Figure
7, lower γ leads to higher investment threshold, V 1

F > V 2
F . Plugging-in the computed V jF into

the equation defining d1(v) (recall that VL is the resulting zero of this function), we numerically
observe that V 1

L > V 2
L (note that are two effects here: changing γ and changing VF . Our numerical

experiments suggest that higher VF decreases VL and higher γ also decreases VL, so both effects
make V 2

L to be less than V 1
L ). Thus, the more risk-averse firm will in fact pre-empt. Overall, we

have several cases for the outcome of the game depending on the initial condition V0 = v:

v < V 1
L : both firms wait;

V 2
L ≤ v < V 1

L : firm 2 becomes the Leader; firm 1 will invest at V 1
F ;

V 1
L ≤ v < V 2

F : a Nash equilibrium via a stage game;
V 2
F ≤ v < V 1

F : firm 2 becomes the Leader; firm 1 will invest at V 1
F ;

V 1
F ≤ v : both firms invest immediately.

We note that when v ∈ [V 2
F , V

1
F ] firm 2 is determined to invest immediately, and in light of this,

firm 1 will delay investment since S1(v) < F1(v), i.e. simultaneous investment is not preferred
by firm 1. The most interesting region is V 1

L ≤ v < V 2
F where both firms wish to be Leader but

do not want simultaneous investment. In that case, the payoff for firm 1 is (cf. (2.25))

E1(v; p1, p2) = p1(v)(1− p2(v))L1(v) + (1− p1(v))p2(v)F1(v) + p1(v)p2(v)S1(v)
p1(v) + p2(v)− p1(v)p2(v) .

Fixing momentarily p2, and differentiating with respect to p1 we obtain
∂

∂p1
E1(v; p1, p2) = p2(v)[L1(v)− F1(v)] + p2

2(v)(S1(v)− L1(v))
(p1(v)(1− p2(v)) + p2(v))2 .

We now observe that unless (i) p2(v) = L1(v)−F1(v)
L1(v)−S1(v) which leads to E1(v; p1, p2) = F1(v) inde-

pendent of p1, (ii) the sign of ∂
∂p1

E1(v; p1, p2) is constant on [0, 1] 3 p1. After checking similar
expressions for firm 2 and its E2(v; p1, p2), it therefore follows that there are three Nash equilib-
ria, namely the pure coordinated equilibria (p1(v), p2(v)) = (0, 1) and (1, 0), where one firm will
become leader with certainty, and the mixed equilibrium

pmix1 (v) = L2(v)− F2(v)
L2(v)− S2(v) , pmix2 (v) = L1(v)− F1(v)

L1(v)− S1(v) . (C.1)

An equilibrium refinement method is needed to pick among these possibilities; for instance we
note that only the mixed Nash equilibrium is perfect in the sense of trembling-hand deviations.
At the end-points of [V 1

L , V
2
F ] we find that

pmix1 (V 1
L+) > 0, pmix2 (V 1

L+) = 0, and pmix1 (V 2
F−) = 1, pmix2 (V 2

F−) < 1,
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which shows that at both end-points, if the mixed strategies are used, firm 1 will emerge as leader.
Hence, the mixed equilibrium generally preferences firm 1, in stark contrast to the neighboring
regions [V 2

L , V
1
L ) and [V 2

F , V
1
F ) where firm 2 is guaranteed to invest first.

Appendix D. Solution to equation (3.39)

Let

h(x) := κ

(
x− 1

κ
log
[

1− (1− eκ(1−b)VF )
(
x

VF

)β]
−K

)

− log

1 + κ

β
x ·

1 +
(1− eκ(1−b)VF )βx

β−1

V β
F

γ(1− ρ2)(1−
(
1− eκ(1−b)VF

) (
x
VF

)β
)


 .

Then (3.39) is equivalent to the claim that h(x) has a zero on [0, VF ]. We observe that

h(0) = −κK < 0

h(VF ) = κ (bVF −K)− log
[
γ(1− ρ2)VF

β
+ e−κ(1−b)VF

]
Taking b = (1− a) and using (3.7), the above is equivalent to

h(VF ) = log
(

1 + γ(1− ρ2)bVF
β

)
− log

[
γ(1− ρ2)VF

β
+ e−κ(1−b)VF

]
.

It follows that h(VF ) > 0, whenever

1− κ(1− b)VF
β

> e−κ(1−b)VF ,

which is in turn satisfied for any b > b∗3, where b∗3 is defined by (3.40).
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