Macroeconomic modelling with heterogeneous agents: the master equation approach

M. R. Grasselli

Mathematics and Statistics - McMaster University
Joint work with Patrick Li

Research in Options, Rio de Janeiro, November 28, 2016
A brief history of Macroeconomics

- Classics (Smith, Ricardo, Marx): no distinction between micro and macro, Say’s law, emphasis on long run.
- Beginning of the 20th century (Wicksell, Fisher): natural rate of interest, quantity theory of money.
- Keynesian revolution (1936): shift to demand, fallacies of composition, role of expectations, and much more!
- Neoclassical synthesis - 1945 to 1970 (Hicks, Samuelson, Solow): Keynesian consensus.
- Start of Macro Wars: Real Business Cycles versus New Keynesian.
- 1990’s: impression of consensus around DSGE models, but with different flavours.
Dynamic Stochastic General Equilibrium

- Seeks to explain the aggregate economy using theories based on strong microeconomic foundations.
- Collective decisions of rational individuals over a range of variables for both present and future.
- All variables are assumed to be simultaneously in equilibrium.
- The only way the economy can be in disequilibrium at any point in time is through decisions based on wrong information.
- Money is neutral in its effect on real variables.
Macroeconomic modelling with heterogeneous agents: the master equation approach

M. R. Grasselli

Mainstream

Alternative approaches

Mesoeconomic aggregation

Heterogeneous firms

Heterogeneous Households

Numerical Results

SMD theorem: something is rotten in GE land
Finance in DSGE models

- The financial sector merely serve as intermediaries channeling savings from households to business.
- Banks provide indirect finance by borrowing short and lending long (business loans), thereby solving the problem of liquidity preferences (Diamond and Dybvig (1986) model).
- Financial market provide direct finance through shares, thereby introducing market prices and discipline.
- Financial Frictions (e.g. borrowing constraints, market liquidity) create persistence and amplification of real shocks (Bernanke and Gertler (1989), Kiyotaki and Moore (1997) models).
- See Brunnermeier and Sannikov (2013) for a recent contribution to this strand of literature in light of the financial crisis, in particular in the context of macro-prudential regulation.
Frictions literature still missing the point

Turner 2013 observes that:

- “Quantitative impacts suggested by the models were far smaller than those empirically observed in real world episodes such as the Great Depression or the 2008 crisis”
- “Most of the literature omits consideration of behaviourally driven ‘irrational’ cycles in asset prices”.
- “the vast majority of the literature ignores the possibilities of credit extension to finance the purchase of already existing assets”.
- “the dominant model remains one in which household savers make deposits in banks, which lend money to entrepreneurs/businesses to pursue ‘investment projects’. The reality of a world in which only a small proportion (e.g. 15%) of bank credit funds ‘new investment projects’ has therefore been left largely unexplored.”
Categories of bank debt: UK, 2009

- **£bn**
 - Other corporate: 232
 - Commercial real estate: 243
 - Residential mortgage (including securitizations and loan transfers): 1235
 - Unsecured personal: 227

- Primarily productive investment
- Some productive investment and some leveraged asset play
- Mainly purchase of existing assets
- Pure life-cycle consumption smoothing
A parallel history of Macroeconomics

- Classical 19th century monetarism (Bagehot, Allan Young): role of banks in trade (Britain) and development (U.S.), central banking.
- Several prominent disciples of Keynes (Kaldor, Robinson, Davidson) immediately rejected the Neoclassical synthesis as “bastardized Keynesianism”.
- Flow of Funds accounting - 1952 (Copeland): alternative to both $Y = C + I + G + X - M$ (finals sales) and $MV = PT$ (money transactions) by tracking exchanges of both goods and financial assets.
- Gurley, Shaw, Tobin, Minsky: financial intermediation at centre stage.
- Stock-flow consistent models (Godley, Lavoie)
- Revival of interest after the 2008 crisis.
Key insight 1: money is not neutral

- Money is hierarchical: currency is a promise to pay gold (or taxes); deposits are promises to pay currency; securities are promises to pay deposits.
- Financial institutions are market-makers straddling two levels in the hierarchy: central banks, banks, security dealers.
- The hierarchy is dynamic: discipline and elasticity change in time.
Key insight 2: money is endogenous

- Banks create money and purchasing power.
- Reserve requirements are never binding.

Diagram:
- Banks
- Loan to entrepreneur
- Credit to entrepreneurs' deposit account
- 100

M. R. Grasselli

Mainstream

Alternative approaches
- SFC models
- The ABM alternative

Mesoeconomic aggregation

Heterogeneous firms

Heterogeneous Households

Numerical Results
Key insight 3: private debt matters

Figure: Change in debt and unemployment.
Key insight 4: finance is not just intermediation

- Market never clear in all states: set of events is larger than what can be contracted.
- The financial sector absorbs the risk of unfulfilled promises.
- The cone of acceptable losses defines the size of the real economy.

Figure: Cherny and Madan (2009)
Much better economics: SFC models

Stock-flow consistent models emerged in the last decade as a common language for many heterodox schools of thought in economics.

Consider both real and monetary factors from the start

Specify the balance sheet and transactions between sectors

Accommodate a number of behavioural assumptions in a way that is consistent with the underlying accounting structure.

Reject silly (and mathematically unsound!) hypotheses such as the RARE individual (representative agent with rational expectations).

See Godley and Lavoie (2007) for the full framework.
Balance Sheets

<table>
<thead>
<tr>
<th>Balance Sheet</th>
<th>Households</th>
<th>Firms</th>
<th>Banks</th>
<th>Central Bank</th>
<th>Government</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>current</td>
<td>capital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>+H<sub>h</sub></td>
<td>+H<sub>b</sub></td>
<td>−H</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Deposits</td>
<td>+M<sub>h</sub></td>
<td>+M<sub>f</sub></td>
<td>−M</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td></td>
<td>−L</td>
<td>+L</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bills</td>
<td>+B<sub>h</sub></td>
<td></td>
<td>+B<sub>b</sub></td>
<td>+B<sub>c</sub></td>
<td>−B</td>
<td>0</td>
</tr>
<tr>
<td>Equities</td>
<td>+p<sub>f</sub>E<sub>f</sub> + p<sub>b</sub>E<sub>b</sub></td>
<td>−p<sub>f</sub>E<sub>f</sub></td>
<td>−p<sub>b</sub>E<sub>b</sub></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Advances</td>
<td></td>
<td>−A</td>
<td>+A</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Capital</td>
<td></td>
<td>+pK</td>
<td></td>
<td></td>
<td></td>
<td>pK</td>
</tr>
<tr>
<td>Sum (net worth)</td>
<td>V<sub>h</sub></td>
<td>0</td>
<td>V<sub>f</sub></td>
<td>V<sub>b</sub></td>
<td>0</td>
<td>−B</td>
</tr>
</tbody>
</table>

Table: Balance sheet in an example of a general SFC model.
Transactions

<table>
<thead>
<tr>
<th>Transactions</th>
<th>Households</th>
<th>Firms</th>
<th>Banks</th>
<th>Central Bank</th>
<th>Government</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>current</td>
<td>capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>$-pc_h$</td>
<td>$+pc$</td>
<td>$-pc_b$</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Investment</td>
<td>$+pl$</td>
<td>$-pl$</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Gov spending</td>
<td>$+pg$</td>
<td></td>
<td></td>
<td></td>
<td>$-pg$</td>
<td>0</td>
</tr>
<tr>
<td>Acct memo [GDP]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pY</td>
</tr>
<tr>
<td>Wages</td>
<td>$+w$</td>
<td>$-w$</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Taxes</td>
<td>$-T_h$</td>
<td>$-T_f$</td>
<td></td>
<td>$+T$</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest on deposits</td>
<td>$+r_{Mh}M_h$</td>
<td>$+r_{Mf}M_f$</td>
<td></td>
<td>$-r_{M}M$</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest on loans</td>
<td>$-r_{L}L$</td>
<td></td>
<td>$+r_{L}L$</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Interest on bills</td>
<td>$+r_{Bh}B_h$</td>
<td></td>
<td>$+r_{Bb}B_b$</td>
<td>$+r_{Bc}B_c$</td>
<td>$-r_{B}B$</td>
<td>0</td>
</tr>
<tr>
<td>Profits</td>
<td>$+\Pi_d + \Pi_b$</td>
<td>$-\Pi$</td>
<td>$+\Pi_u$</td>
<td>$-\Pi_b$</td>
<td>$-\Pi_c$</td>
<td>$+\Pi_c$</td>
</tr>
<tr>
<td>Sum</td>
<td>S_h</td>
<td>0</td>
<td>S_{f-l}</td>
<td>S_b</td>
<td>0</td>
<td>S_g</td>
</tr>
</tbody>
</table>

Table: Transactions in an example of a general SFC model.
Flow of Funds

<table>
<thead>
<tr>
<th>Flow of Funds</th>
<th>Households</th>
<th>Firms</th>
<th>Banks</th>
<th>Central Bank</th>
<th>Government</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>+(H_h)</td>
<td></td>
<td>+(H_b)</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Deposits</td>
<td>+(M_h)</td>
<td></td>
<td>-(M)</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Loans</td>
<td></td>
<td>-(L)</td>
<td></td>
<td>+(L)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bills</td>
<td>+(B_h)</td>
<td></td>
<td>+(B_b)</td>
<td>+(B_c)</td>
<td>-(B)</td>
<td>0</td>
</tr>
<tr>
<td>Equities</td>
<td>+(p_fE_f)(+p_bE_b)</td>
<td>-(p_fE_f)</td>
<td>-(p_bE_b)</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Advances</td>
<td></td>
<td></td>
<td></td>
<td>-(\dot{A})</td>
<td>+(\dot{A})</td>
<td>0</td>
</tr>
<tr>
<td>Capital</td>
<td></td>
<td>+(pI)</td>
<td></td>
<td></td>
<td></td>
<td>(pI)</td>
</tr>
<tr>
<td>Sum</td>
<td>(S_h)</td>
<td>0</td>
<td>(S_f)</td>
<td>(S_b)</td>
<td>0</td>
<td>(S_g)</td>
</tr>
<tr>
<td>Change in Net Worth</td>
<td>((S_h + \dot{p}_fE_f + \dot{p}_bE_b))</td>
<td>((S_f - \dot{p}_fE_f + \dot{p}K - p\delta K))</td>
<td>((S_b - \dot{p}_bE_b))</td>
<td>(S_g)</td>
<td>(\dot{p}K + pK)</td>
<td></td>
</tr>
</tbody>
</table>

Table: Flow of funds in an example of a general SFC model.
Agent-Based Models in Economics

- Agents have rational objectives, but realistic computational devices (inductive learning, bounded memory, limited information, war games, etc).
- Interactions are modelled directly, without fictitious clearing mechanisms.
- Hierarchical structures (i.e., banks are agents, but so are their clients, as well as the government).
- Equilibrium is just one possible outcome, not assumed a priori.
- Dynamic reactions can modify both existing interactions and the structure of the links.
- Mostly reliant on numerical simulations.
Mesoeconomics: an intermediate scale

- Heterogeneity is introduced through homogeneous ‘types’ or ‘classes’ of agents.
- Agents interact through mean field quantities computed over the classes.
- The state of the system is characterized by the number of agents in each class.
- Dynamics is modelled as a continuous-time Markov process.
The Master Equation

- Let X_t be a Markov process with a discrete state space $\Gamma = \{x_k : 0 \leq k \leq N\}$ and define
 $$P(x_k, t) := P[X_t = x_k | X_0 = x], x \in \Gamma$$

- Recall that, for each x_k, the time evolution of the probability $P(x_k, t)$ is given by the so-called master equation
 $$\frac{\partial P(x_k, t)}{\partial t} = \sum_{x_h \in \Gamma} \left[R_t(x_k | x_h)P(x_h, t) - R_t(x_h | x_k)P(x_k, t) \right],$$

 where
 $$R_t(x_k | x_h) := \lim_{\Delta t \to 0^+} \frac{P[X_{t+\Delta} = x_k | X_t = x_h]}{\Delta t}$$

 are the transition probabilities.
Birth-death processes

- The master equation simplifies considerably if \(X_t = x_k \) is only allowed to jump to its nearest neighbours \(x_{k \pm 1} \) with transition probabilities \(b(x_k) \) and \(d(x_k) \), leading to

\[
\frac{\partial P(x_k, t)}{\partial t} = b(x_{k-1})P(x_{k-1}, t) + d(x_{k+1})P(x_{k+1}, t) - [b(x_k) + d(x_k)]P(x_k, t).
\]

- For example, these \(N + 1 \) differential equations completely characterize the dynamics of an economy with \(N \) agents grouped into two types, where the (random) number of agents of each type at time \(t \) is given by the configuration vector \(\mathbf{N}(t) = (X_t, N - X_t) \).
The homogenous master equation

- Continuing the previous example, let X_t be the number of agents of type 1 and write the master equation as

$$\frac{\partial P(x, t)}{\partial t} = (L - 1)[d(x)P(x, t)] + (L^{-1} - 1)[b(x)P(x, t)],$$

where $L[a(x, t)] = a(x + 1, t)$ is the lead operator.

- Observe further these operators can be written as

$$\begin{align*}
(L - 1)a(x, t) &= a(x + 1, t) - a(x, t) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{\partial^n a(x, t)}{\partial x^n}, \\
(L^{-1} - 1)a(x, t) &= a(x - 1, t) - a(x, t) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \frac{\partial^n a(x, t)}{\partial x^n}.
\end{align*}$$
The ansatz method

- Consider further the ansatz

\[X_t = Nm(t) + \sqrt{N}s_t, \]

where \(m(t) = E[X_t] \) and \(s_t \) is a stochastic spread.

- If we then re-write \(P(x, t) = Q(s, t) \), it follows that the probability density for the spread \(s \) satisfies the modified equation

\[
\frac{\partial Q}{\partial t} - \sqrt{N} \frac{\partial Q}{\partial s} \frac{dm}{dt} = (L - 1)[dQ] + (L^{-1} - 1)[bQ],
\]

where

\[
b(s) = \lambda(N - Nm - \sqrt{Ns}), \quad d(s) = \mu(Nm + \sqrt{Ns}),
\]

for given \textit{individual} transition rates \(\lambda \) and \(\mu \).
Asymptotic approximation

- Collecting terms of order $N^{-1/2}$ and N^{-1} lead to the following system of couple equations

$$\frac{dm}{d\tau} = \lambda - (\lambda + \mu)m$$

$$\frac{\partial Q}{\partial \tau} = (\lambda + \mu) \frac{\partial}{\partial s} [sQ(s, \tau)] + \frac{\lambda(1 - m) + \mu m}{2} \frac{\partial^2 Q(s, \tau)}{\partial s^2}$$

- These lead to stationary solution of the form

$$\bar{m} = \frac{\lambda}{\mu + \lambda}$$

$$\bar{Q}(s) = C \exp \left(\frac{-s^2}{2\sigma^2} \right), \quad \sigma^2 = \frac{\lambda\mu}{(\lambda + \mu)^2}$$
A model with two types of firms - inspired by Carvalho and Di Guilmi (2015)

- Let $z = 1, 2$ denote aggressive and conservative firms with investment for firm j given by

$$i_{z,t}^j = (\alpha_z \cdot \pi + \beta) p \cdot q_{t-1}^j - \lambda \cdot b_{t-1}^j,$$

where $\alpha_z \geq 0, \beta \geq 0, \lambda \geq 0$ are known parameters, and $\alpha_1 > \alpha_2$, and π is the profit share (see next page).

- The price for goods is assumed to be:

$$p = \psi^{-1} c = \psi^{-1} \frac{w}{\xi},$$

where ψ^{-1} is a mark-up factor over unit labour cost c, w is the nominal wage rate, and ξ is productivity per worker.

- The capital for firm j is then given by

$$k_t^j = (1 - \delta) k_{t-1}^j + i_t^j.$$

leading to $I_t = \sum_j i_{z,t}^j$ and $K_t = \sum_j k_t^j$.
A model with two types of firms (continued)

- The wage and profit shares are given by
 \[\frac{w\ell}{p\xi\ell} = \psi, \quad \Pi = 1 - \psi. \]

- The household sector has disposable income of the form
 \[Y_t = \psi \cdot p \cdot Q_t + \theta_t, \]
 where \(\theta_t = \sum_j \theta^j_t \) correspond to distributed profits (see below).

- Household consumption is given by:
 \[C_t = (1 - s^y) Y_t + (1 - s^v) V_{t-1} \]

- Output consists of consumption \(C_t \) plus investment \(I_t \):
 \[p \cdot Q_t = \frac{l_t + (1 - s^y)\theta_t + (1 - s^v) V_{t-1}}{1 - \psi(1 - s^v)} \]
A model with two types of firms (continued)

- Total demand is allocated to each firm according to
 \[q^j_t = Q_t \cdot \frac{k^j_t}{K_t}. \]

- Firm \(j \) computes its retained profit as:
 \[a_t^j = (1 - \Theta) (\pi \cdot p \cdot q_t^j - r \cdot b_{t-1}^j) \]

- This leads to a change in debt of the form:
 \[\Delta b^j_t = i_t^j - a_t^j \]

- The wealth of the household sector, which consists entirely of deposits, changes according to
 \[\Delta V_t = Y_t - C_t \]
Simulations versus ansatz solution - Carvalho and Di Guilmi (2015)

Figure 9: Comparison of the results of the agent-based model and the analytical solution for aggregate debt (upper panel) and share of speculative firms (lower panel).
For the case of two types of agents in each of S sectors (e.g. two types of firms, and two types of households, and two types of banks, etc), the ansatz method generalizes well and leads to S decoupled systems of two equations, each describing the mean and univariate distribution of the spread for N_1 in the pairs of occupation numbers of the form $(N^f_1, N^f - N^f_1)$, $(N^h_1, N^h - N^h_1)$, $(N^b_1, N^b - N^b_1)$, etc.

The method fails for $k > 2$ types in each sector, as it gives a single system of two equations for the means of $N_1, N_2, \ldots, N_{k-1}$ and the joint of their spreads.

Other solution methods, such as the van Kampen (1965) and the Kubo (1978) methods are available but have not been explored yet.
Two types of firms and two types of households

Consider now the same model as before, but with two types of households, workers and investors, characterized by their consumption

\[
c_{1,t}^h = (1 - s_1^y) y_{t-1}^h + (1 - s_1^v) w_{t-1}^h
\]

\[
c_{2,t}^h = (1 - s_2^y) y_{t-1}^h + (1 - s_2^v) w_{t-1}^h
\]

Assume that \(s_1^y \leq s_2^y \) and \(s_1^v \leq s_2^v \), which implies that workers save less than investors.

Household’s saving is thus the difference between disposable income and consumption:

\[
s_{1,t}^h = y_{1,t}^h - c_{1,t}^h
\]

\[
s_{2,t}^h = y_{2,t}^h - c_{2,t}^h
\]
Equity market

- Assume that firm n raises external funds according to the proportions

$$b_{t+1}^n - b_t^n = \varpi (i_{t+1}^n - a_{t+1}^n)$$

$$p_{t+1}^e (e_{t+1}^n - e_t^n) = (1 - \varpi) (i_{t+1}^n - a_{t+1}^n),$$

where $0 \leq \varpi \leq 1$ is a constant common to all firms.

- Conversely, assume that the demand for equities for household m is given by

$$p_{t+1}^e e_{t+1}^m = \varphi v_{t+1}^m (z_{t+1}^m - 1) = \begin{cases}
0 & \text{if } z_{t+1}^m = 1 \\
\varphi v_{t+1}^m & \text{if } z_{t+1}^m = 2,
\end{cases}$$

where φ is a constant common to all households.
Macroeconomic modelling with heterogeneous agents: the master equation approach

M. R. Grasselli

Mainstream Alternative approaches

Mesoeconomic aggregation

Heterogeneous firms

Heterogeneous Households

Numerical Results

ABM versus MF - firms
ABM versus MF - households
Macroeconomic modelling with heterogeneous agents: the master equation approach

M. R. Grasselli

Mainstream
Alternative approaches
Mesoeconomic aggregation
Heterogeneous firms
Heterogeneous Households
Numerical Results

ABM versus MF - equity price

![Dynamics Graph](image)
Example 1: household proportions

Macroeconomic modelling with heterogeneous agents: the master equation approach

M. R. Grasselli

Mainstream
Alternative approaches
Mesoeconomic aggregation
Heterogeneous firms
Heterogeneous Households
Numerical Results
Example 1: firms proportions
Example 1: equity price
Example 1: household income
Example 1: firms financial health
Example 2: household proportions

![Graph showing household types over periods](image-url)
Example 2: firms proportions

Aggressive firms Vs. conservative firms

- Aggressive firms
- Conservative firms
Example 2: equity price
Example 2: household income

![Graph showing household income over time]

- Low-income
- High-income
Example 2: firms financial health
Concluding remarks

- Macroeconomics is too important to be left to macroeconomists.
- Since Keynes’s death it has developed in two radically different approaches:
 1. The dominant one has the appearance of mathematical rigour (the SMD theorems notwithstanding), but is based on implausible assumptions, has poor fit to data in general, and is disastrously wrong during crises. Finance plays a negligible role.
 2. The heterodox approach is grounded in history and institutional understanding, takes empirical work much more seriously, but is generally averse to mathematics. Finance plays a major role.
- It’s clear which approach should be embraced by mathematical finance.
Macroeconomic modelling with heterogeneous agents: the master equation approach

M. R. Grasselli

Mainstream
Alternative approaches
Mesoeconomic aggregation
Heterogeneous firms
Heterogeneous Households

Numerical Results

Muito obrigado!