next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000039916 seconds elapsed
 -- 0.000349959 seconds elapsed
 -- 0.000089417 seconds elapsed
 -- 0.000039834 seconds elapsed
 -- 0.000306541 seconds elapsed
 -- 0.0000785 seconds elapsed
 -- 0.0000225 seconds elapsed
 -- 0.000022375 seconds elapsed
 -- 0.000056667 seconds elapsed
 -- 0.0000335 seconds elapsed
 -- 0.000271041 seconds elapsed
 -- 0.0000715 seconds elapsed
 -- 0.00003875 seconds elapsed
 -- 0.000274708 seconds elapsed
 -- 0.0000735 seconds elapsed
 -- 0.000034 seconds elapsed
 -- 0.000257959 seconds elapsed
 -- 0.00007175 seconds elapsed
 -- 0.000031459 seconds elapsed
 -- 0.000313834 seconds elapsed
 -- 0.0000935 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000037291 seconds elapsed
 -- 0.000327333 seconds elapsed
 -- 0.000076667 seconds elapsed
 -- 0.000036958 seconds elapsed
 -- 0.000293 seconds elapsed
 -- 0.000072417 seconds elapsed
 -- 0.000049667 seconds elapsed
 -- 0.000294375 seconds elapsed
 -- 0.000076792 seconds elapsed
 -- 0.000042375 seconds elapsed
 -- 0.000281125 seconds elapsed
 -- 0.00007975 seconds elapsed
 -- 0.000036458 seconds elapsed
 -- 0.000261833 seconds elapsed
 -- 0.000072667 seconds elapsed
 -- 0.000034667 seconds elapsed
 -- 0.000285209 seconds elapsed
 -- 0.000073375 seconds elapsed
 -- 0.000035792 seconds elapsed
 -- 0.000328291 seconds elapsed
 -- 0.000073 seconds elapsed
 -- 0.000034666 seconds elapsed
 -- 0.000304667 seconds elapsed
 -- 0.00007725 seconds elapsed
 -- 0.000047667 seconds elapsed
 -- 0.000283917 seconds elapsed
 -- 0.000073875 seconds elapsed
 -- 0.000177417 seconds elapsed
 -- 0.00187475 seconds elapsed
 -- 0.000323167 seconds elapsed
 -- 0.000045125 seconds elapsed
 -- 0.00027225 seconds elapsed
 -- 0.000079084 seconds elapsed
 -- 0.000035542 seconds elapsed
 -- 0.000278708 seconds elapsed
 -- 0.000074292 seconds elapsed
 -- 0.000049333 seconds elapsed
 -- 0.000428875 seconds elapsed
 -- 0.000128167 seconds elapsed
 -- 0.000041458 seconds elapsed
 -- 0.000420583 seconds elapsed
 -- 0.000135042 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.