Math 3GR3, Tutorial 8

Mike Cummings

November 7, 2023

Topics: Internal direct products. Normal subgroups.

Question 1. True or false? Justify your answers.
(a) $U(20) \cong U(24)$.
(b) Any subgroup of S_{3} is normal.
(c) A_{n} is always normal in S_{n}.
(d) Every subgroup of a cyclic group is normal.
(e) Every group has at least 2 distinct normal subgroups.

Recall: Theorem 10.3. Let N be a subgroup of G. The following are equivalent:
(a) N is normal in G,
(b) $g N g^{-1}=N$,
(c) $g N g^{-1} \subseteq N$.

Question 2. Let $T=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$ be the multiplicative subgroup of complex numbers lying on the unit circle and let \mathbb{R}^{+}be the multiplicative group of positive real numbers. Show that $\mathbb{C}^{*} \cong \mathbb{R}^{+} \times T$.

Question 3 (Dummit-Foote 3.1.34). Consider the dihedral group D_{n}. Fix an integer k dividing n. Show that the cyclic subgroup $\left\langle r^{k}\right\rangle$ is a normal subgroup of D_{n}.

Question 4. Suppose N is a subgroup of G such that if $g \in G$, then $g^{2} \in N$. Show that N is normal.

Question 5. Prove or disprove: if a group G has normal subgroups N and K such that $N \cong K$, then $G / N \cong G / K$.

