Math 3GR3, Tutorial 7

Mike Cummings

October 31, 2023

Topics: Cosets partition a group. Isomorphisms.

Question 1. Partition the group G of symmetries of a triangle by left cosets of $H = \{e, \mu_1\}$. Recall that the Cayley table for G is as follows.

 0	e	ρ_1	ρ_2	μ_1	μ_2	μ_3
e	e	$ \begin{array}{c} \rho_1 \\ \rho_2 \\ e \\ \mu_2 \\ \mu_3 \\ \mu_1 \end{array} $	ρ_2	μ_1	μ_2	μ_3
ρ_1	ρ_1	ρ_2	e	μ_3	μ_1	μ_2
ρ_2	ρ_2	e	ρ_1	μ_2	μ_3	μ_1
μ_1	μ_1	μ_2	μ_3	e	ρ_1	ρ_2
μ_2	μ_2	μ_3	μ_1	ρ_2	e	ρ_1
μ_3	μ_3	μ_1	μ_2	ρ_1	ρ_2	e

With this example as motivation, let us review Lemma 6.3.

Lemma 6.3. Let H be a subgroup of G and pick $g_1, g_2 \in G$. The following are equivalent.

- (i) $g_1H = g_2H$
- (ii) $Hg_1^{-1} = Hg_2^{-1}$
- (iii) $g_1 H \subset g_2 H$
- (iv) $g_2 \in g_1 H$
- (v) $g_1^{-1}g_2 \in H$

For instance, in the above example, $\mu_3 H = \rho_1 H$ since $\mu_3 \in \rho_1 H$.

Question 2 (Judson 6.5.8). Prove that \mathbb{Q} is not isomorphic to \mathbb{Z} .

Question 3 (Judson 9.4.7). Show any cyclic group G of order n is isomorphic to \mathbb{Z}_n .

Question 4 (Judson 9.4.2). Let G be the subgroup of $\mathbf{GL}_2(\mathbb{R})$ consisting of matrices of the following form.

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

Show that $G \cong \mathbb{C}^*$.