Math 3GR3, Tutorial 7

Mike Cummings

October 31, 2023

Topics: Cosets partition a group. Isomorphisms.
Question 1. Partition the group G of symmetries of a triangle by left cosets of $H=\left\{e, \mu_{1}\right\}$. Recall that the Cayley table for G is as follows.

\circ	e	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
e	e	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
ρ_{1}	ρ_{1}	ρ_{2}	e	μ_{3}	μ_{1}	μ_{2}
ρ_{2}	ρ_{2}	e	ρ_{1}	μ_{2}	μ_{3}	μ_{1}
μ_{1}	μ_{1}	μ_{2}	μ_{3}	e	ρ_{1}	ρ_{2}
μ_{2}	μ_{2}	μ_{3}	μ_{1}	ρ_{2}	e	ρ_{1}
μ_{3}	μ_{3}	μ_{1}	μ_{2}	ρ_{1}	ρ_{2}	e

With this example as motivation, let us review Lemma 6.3.
Lemma 6.3. Let H be a subgroup of G and pick $g_{1}, g_{2} \in G$. The following are equivalent.
(i) $g_{1} H=g_{2} H$
(ii) $H g_{1}^{-1}=H g_{2}^{-1}$
(iii) $g_{1} H \subset g_{2} H$
(iv) $g_{2} \in g_{1} H$
(v) $g_{1}^{-1} g_{2} \in H$

For instance, in the above example, $\mu_{3} H=\rho_{1} H$ since $\mu_{3} \in \rho_{1} H$.
Question 2 (Judson 6.5.8). Prove that \mathbb{Q} is not isomorphic to \mathbb{Z}.
Question 3 (Judson 9.4.7). Show any cyclic group G of order n is isomorphic to \mathbb{Z}_{n}.
Question 4 (Judson 9.4.2). Let G be the subgroup of $\mathbf{G L}_{2}(\mathbb{R})$ consisting of matrices of the following form.

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

Show that $G \cong \mathbb{C}^{*}$.

