Math 3GR3, Tutorial 3

Mike Cummings

September 26, 2023

Topics: \mathbb{Z}_n . Group of units. Subgroups. Cyclic groups.

Question 1 (Judson 3.5.17). Give an example of three different groups with 8 elements. Why are the groups different?

Aside. Much of abstract algebra in the 20th century was devoted to the "classification problem", determining exactly how many unique groups with n elements there are, for each n. In the case of finite *simple* groups, this was solved in ~2004, culminating the work of around 100 authors spanning half a century.

The takeaway is this: questions like the previous question are very difficult in general. Later in the course, we will learn what it means for a group to be simple, and the notion of *isomorphic* groups, that is, when are two groups "the same".

Question 2 (Judson 3.5.47). Prove or disprove: If H and K are subgroups of a group G, then $HK := \{hk \mid h \in H \text{ and } k \in K\}$ is a subgroup of G. What if G is abelian?

Question 3 (Judson 3.5.52). Prove or disprove: Every proper subgroup of a nonabelian group is also nonabelian.

Question 4 (Judson 4.5.26). Prove that \mathbb{Z}_p has no nontrivial subgroups if p is prime.

Question 5 (Judson 4.5.30). Suppose that G is a group and let $a, b \in G$. Prove that if |a| = m and |b| = n, with gcd(m, n) = 1, then $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Question 6 (Judson 4.5.34). Let G be an abelian group of order pq where gcd(p,q) = 1. If G contains elements a and b of order p and q respectively, then show that G is cyclic.