Math 3GR3, Tutorial 2

Mike Cummings

September 19, 2023

Tutorial problems

Topics: SageMath. Groups, Cayley tables, commutativity.
Example 1. Course webpage: https://math.memaster.ca/~matt/3gr3/index.html.

- Use the Sage cell on the course webpage
- Open online version of the course textbook
- Enter the following commands:

```
a = 11
b = 77115025
gcd(a, b)
>> run cell
```

```
# Q: what does the following output give us?
```

$\operatorname{xgcd}(a, b)$

For fun:

```
for g in graphs(4):
    if not g.is_connected():
        continue
    g.show()
    print('\n')
```

Question 2. Which of the following Cayley tables form a group?
(a) [Judson Exercise 3.5.2(a)]

\circ	a	b	c	d
a	a	c	d	a
b	b	b	c	d
c	c	d	a	b
d	d	a	b	c

(b)

	e	w	x	y	z
e	e	w	x	y	z
w	w	e	y	z	x
x	x	z	e	w	y
y	y	x	z	e	w
z	z	y	w	x	e

Question 3. Compute the Cayley tables of the following additive groups:
(a) \mathbb{Z}_{4},
(b) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Question 4 (Judson Exercise 3.5.7). Let $S=\mathbb{R} \backslash\{-1\}$ and define a binary operation on S by $a * b=a+b+a b$. Prove that $(S, *)$ is an abelian group.

Question 5 (Judson Exercise 3.5.32). Let G be a group with a finite and even number of elements. Show that there exists some nonidentity $a \in G$ such that $a^{2}=e$.

