Math 3GR3, Tutorial 2

Mike Cummings

September 19, 2023

Tutorial problems

Topics: SageMath. Groups, Cayley tables, commutativity.

Example 1. Course webpage: https://math.mcmaster.ca/~matt/3gr3/index.html.

- Use the Sage cell on the course webpage
- Open online version of the course textbook
- Enter the following commands:

```
a = 11
b = 77115025
gcd(a, b)
>> run cell
```

Q: what does the following output give us? xgcd(a, b)

For fun:

```
for g in graphs(4):
    if not g.is_connected():
        continue
    g.show()
    print('\n')
```

Question 2. Which of the following Cayley tables form a group?

(a)	[Judson Exercise 3.5.2(a)]							e	w	x	y	z
							e	e	w	x	y	z
	0	a	b	c	d	(b)	w	w	e	y	z	x
	a	a	С	d	a	(0)	x	x	z	e	w	y
	b	b	b	c	d		y	y	x	z	e	w
	С	c	d	a	b		z	z	y	w	x	e
	d	d	a	b	c							

Question 3. Compute the Cayley tables of the following additive groups:

(a) \mathbb{Z}_4 , (b) $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Question 4 (Judson Exercise 3.5.7). Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.

Question 5 (Judson Exercise 3.5.32). Let G be a group with a finite and even number of elements. Show that there exists some *nonidentity* $a \in G$ such that $a^2 = e$.