Math 3GR3, Tutorial 1

Mike Cummings

September 12, 2023

Topics: Equivalence relations and partitions. Euclidean algorithm and greatest common divisor.
Question 1. Recall that an equivalence relation is a relation on a nonempty set that is reflexive, symmetric, and transitive. Explain why the following relations are not equivalence relations.
(a) $x \sim y$ in \mathbb{R} if $x \neq y$
(b) $x \sim y$ in \mathbb{C} if $x \leq y$
(c) Let $\operatorname{Mat}_{n}(\mathbb{Q})$ denote $n \times n$ matrices with entries in \mathbb{Q}. Define $A \sim B$ in $\operatorname{Mat}_{n}(\mathbb{Q})$ if $\operatorname{det}(A B)<0$.

Question 2 (Judson Chapter 1, Exercise 29. The projective real line). Define a relation on $\mathbb{R}^{2} \backslash\{(0,0)\}$ by letting $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if there exists a nonzero real number λ such that $\left(x_{1}, y_{1}\right)=$ $\left(\lambda x_{2}, \lambda y_{2}\right)$.
(a) Prove that \sim defines an equivalence relation on $\mathbb{R}^{2} \backslash\{(0,0)\}$.
(b) What are the corresponding equivalence classes?

Question 3 (Lakins Exercise 6.2.1(c)). Compute $\operatorname{gcd}(7776,16650)$ and find integers x, y such that $7776 x+16650 y=\operatorname{gcd}(a, b)$.

Question 4 (Judson 2.4.16). Let a and b be nonzero integers. If there exist integers r and s such that $a r+b s=1$, show that a and b are relatively prime.

Question 5 (Judson 2.4.24). If $d=\operatorname{gcd}(a, b)$ and $m=\operatorname{lcm}(a, b)$, prove that $d m=|a b|$.
Question 6. Let p be a prime number.
(a) (Lakins Exercise 6.3.6) If i is an integer satisfying $0<i<p$, show that $\binom{p}{i} \equiv 0 \bmod p$. That is, show that p divides $\binom{p}{i}$.
(b) Give an example to show that (a) fails if p is not prime.
(c) (Freshman's dream) Let a and b be integers. Using (a), show that $(a+b)^{p} \equiv a^{p}+b^{p} \bmod p$. [Hint: binomial theorem.]

