Algebra: What Comes Next?
 (In Math 4GR3 and Math 4ET3)

Mike Cummings

Math 3GR3, Tutorial 12
December 5, 2023

Slides available at: math.mcmaster.ca/~cummim5/teaching/2023/3GR3

Outline

1 Groups

2 Rings

3 Algebraic Geometry

Simple groups

Let G be a group. Recall:

- a subgroup N of G is normal if $g N=N g$ for all g in G
- G is simple if it has no nontrivial normal subgroups

Examples of simple groups include:

- the alternating group A_{n} for $n \geq 5$
- \mathbb{Z}_{p} for any prime p

Classification of finite simple groups

Theorem

Any finite simple group either is in one of the following inifinite families,
$1 \mathbb{Z}_{p}$,
(2) A_{n},
3. a group of Lie type,

4 a derivative of a group of Lie type,
or is one of 26 "sporadic groups" (such as the Monster)

Timeline of the classification

1832 Galois introduced normal subgroups, finds A_{n}
1872 Sylow Theorems proved
1892 Hölder asks for a classification of finite simple groups
1893 Cole classifies simple groups up to order 660
Work continued throughout the 1900s and culminated in 2004
Some mathematicians who worked on this problem include:
Galois, Sylow, Hölder, Cole, Jordan, Frobenius, Dickson, Burnside, Conway, Gorenstein, Harada

Finitely generated groups

The group $\mathbb{Z} \times \mathbb{Z}_{2}$ is not cyclic, but it is finitely generated,

$$
\mathbb{Z} \times \mathbb{Z}_{2}=\langle(1,0),(0,1)\rangle
$$

Theorem (Fundamental Theorem of Finitely Generated Groups)
Any finitely generated group is isomorphic to

$$
\mathbb{Z}^{t} \times \mathbb{Z}_{p_{1}^{r_{1}}} \times \mathbb{Z}_{p_{2}^{r_{2}}} \times \cdots \times \mathbb{Z}_{p_{s}^{r_{s}}}
$$

for some primes $p_{1} \ldots, p_{s}$ and positive integer powers t, r_{1}, \ldots, r_{s}

How?

group actions

- Class equation
- Burnside's lemma
- composition series
- p-groups and Sylow theorems

PIDs

An integral domain R is a principal ideal domain (PID) if every ideal $/$ of R can be generated by a single element

Example

- $\mathbb{Z}, \mathbb{Z}_{n}$
- any field
- $\mathbb{R}[x]$ but not $\mathbb{Z}[x]$

Irreducible and prime elements

Let R be an integral domain

- a unit in R is an element with a multiplicative inverse
- an non-zero and non-unit element $a \in R$ is irreducible if $a=b c$ implies that either b or c is a unit
- elements a and b in R are associates if $a=u b$ for a unit u

Example

- In $\mathbb{R}[x]$, the elements x and $2 x$ are associates and irreducible
- In \mathbb{Z}, prime numbers are irreducible

UFDs

Theorem (Fundamental Theorem of Arithmetic)
11 Any positive integer can be written as a product of primes
2. This product is unique up to reordering

Definition

An integral domain is a unique factorization domain (UFD) if
11 any element can be written as a product of irreducibles
$\boxed{2}$ this product is unique up to reordering and associates

PIDs and UFDs

Theorem
PID \Longrightarrow UFD, but the converse is false

Example

$$
\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] \text { is a UFD but not a PID }
$$

Other classes of rings

- Euclidean domains: integral domains with a division algorithm
- Noetherian
- Artinian
- Local
- Regular local
- Regular

Varieties

Figure: $\mathbb{V}\left(y-x^{2}\right)$

Figure: $\mathbb{V}\left(x^{2}+(y-1)^{2}-1\right)$

Varieties

$$
\begin{aligned}
& \mathbb{V}\left(y-x^{2}, x^{2}+(y-1)^{2}-1\right) \\
& \quad=\{(0,0),(\pm 1,1)\} \subseteq \mathbb{C}^{2}
\end{aligned}
$$

Varieties \leftrightarrow Ideals

$$
\begin{gathered}
V=\mathbb{V}\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathbb{C}^{n} \\
\vdots \\
\mathbb{I}(V)=\left\langle f_{1}, \ldots, f_{r}\right\rangle \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

Coordinate ring

Let $V \subseteq \mathbb{C}^{n}$ be a variety
The coordinate ring $\mathbb{C}[V]$ of V is the ring of polynomials in n variables whose domain is V

Example

$$
\text { Let } \begin{aligned}
& V=\mathbb{V}\left(x^{2}+y^{2}-1\right) \subseteq \mathbb{C}^{2} \\
& f(x, y)=0 \\
& g(x, y)=y-x^{2}=y+y^{2}-1 \text { on } V \\
& h(x, y)=x^{2}+y^{2}-1=0 \text { on } V, \text { since } h \in \mathbb{I}(V)
\end{aligned}
$$

Coordinate ring

Let $V \subseteq \mathbb{C}^{n}$ be a variety
Define a homomorphism of rings

$$
\begin{gathered}
\varphi: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \\
\varphi(f)=\left.f\right|_{V}
\end{gathered}
$$

by restriction to V

- the image of φ is $\mathbb{C}[V]$
- $\operatorname{ker} \varphi=\mathbb{I}(V)$

$$
\mathbb{C}[V] \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathbb{I}(V)
$$

Algebra "sees" geometry

$$
V=\mathbb{V}\left(y-x^{2}\right) \subseteq \mathbb{C}^{2} \quad \mathbb{C}[V] \cong \mathbb{C}[x, y] /\left\langle y-x^{2}\right\rangle \cong \mathbb{C}[x]
$$

Algebra "sees" geometry

$\mathbb{I}(V)$ not prime
$\mathbb{C}[V]$ not an integral domain

$$
\begin{aligned}
& y-x \notin \mathbb{I}(V) \\
& y+x \notin \mathbb{I}(V)
\end{aligned}
$$

$$
(y-x)(y+x) \in \mathbb{I}(X)
$$

Morphisms and isomorphisms

Let $V \subseteq \mathbb{C}^{n}$ and $W \subseteq \mathbb{C}^{m}$ be varieties

A map of varieties $\varphi: V \rightarrow W$ is of the form

$$
\varphi\left(a_{1}, \ldots, a_{n}\right)=\left(f_{1}\left(a_{1}, \ldots, a_{n}\right), \ldots, f_{m}\left(a_{1}, \ldots, a_{n}\right)\right)
$$

where each f_{i} is a polynomial in n variables
An isomorphism is a bijective map that admits an inverse; we say that V and W are isomorphic

Example of an isomorphism

$$
\begin{array}{cc}
V=\mathbb{V}(0)=\mathbb{C} & W=\mathbb{V}\left(y-x^{2}\right) \subseteq \mathbb{C}^{2} \\
\varphi: V \rightarrow W & \psi: W \rightarrow V \\
\varphi(t)=\left(t, t^{2}\right) & \psi(u, v)=u \\
\mathbb{C}[V] \cong \frac{\mathbb{C}[t]}{\langle 0\rangle}=\mathbb{C}[t] & \mathbb{C}[W] \cong \frac{\mathbb{C}[x, y]}{\left\langle y-x^{2}\right\rangle} \cong \mathbb{C}[x]
\end{array}
$$

Isomorphisms of varieties and coordinate rings

Theorem
Let $V \subseteq \mathbb{C}^{n}$ and $W \subseteq \mathbb{C}^{m}$ be varieties
$V \cong W$ if and only if $\mathbb{C}[V] \cong \mathbb{C}[W]$

Nodal cubic

Figure: $V=\mathbb{V}\left(y^{2}-x^{3}-x^{2}\right)$

$$
\mathbb{C}[V] \cong \frac{\mathbb{C}[x, y]}{\left\langle y^{2}-x^{3}-x^{2}\right\rangle} \not \approx \mathbb{C}[t]
$$

$\ln \mathbb{C}[V]$,

$$
\begin{aligned}
y^{2} & =y \cdot y \\
& =x^{2}(x+1)
\end{aligned}
$$

$\mathbb{C}[V]$ is not a UFD, but $\mathbb{C}[t]$ is

So $V \not \approx \mathbb{C}$

Twisted cubic

Desmos 3D Link

$$
V \cong \mathbb{C}
$$

$$
\begin{aligned}
\mathbb{C}[V] & \cong \frac{\mathbb{C}[x, y, z]}{\left\langle y-x^{2}, z-x^{3}\right\rangle} \\
& \cong \mathbb{C}\left[x, x^{2}, x^{3}\right] \\
& \cong \mathbb{C}[x]
\end{aligned}
$$

Cuspidal cubic

Figure: $V=\mathbb{V}\left(y^{3}-x^{2}\right)$

$$
\begin{gathered}
V \nsubseteq \mathbb{C} \\
\mathbb{C}[V] \cong \frac{\mathbb{C}[x, y]}{\left\langle y^{3}-x^{2}\right\rangle}
\end{gathered}
$$

Not a UFD:

$$
y^{3}=y \cdot y \cdot y=x \cdot x
$$

What else?

"Classical" algebraic geometry

- intersection theory
- Schubert calculus

Connections to number theory

- Arithmetic and elliptic curves

Computational algebraic geometry (Math 4ET3)

- Gröbner bases
- degeneration (initial ideals)

Reading

Groups and Rings

- Judson, Chapters 13-15, 17, 18, 21
- Dummit and Foote. Abstract Algebra

Algebraic Geometry

- Karen Smith et al. Invitation to Algebraic Geometry
- Cox, Little, and O'Shea. Ideals, Varieties, and Algorithms

