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Simple groups

Let G be a group. Recall:

a subgroup N of G is normal if gN = Ng for all g in G

G is simple if it has no nontrivial normal subgroups

Examples of simple groups include:

the alternating group An for n ≥ 5

Zp for any prime p



Classification of finite simple groups

Theorem

Any finite simple group either is in one of the following inifinite
families,

1 Zp,

2 An,

3 a group of Lie type,

4 a derivative of a group of Lie type,

or is one of 26 “sporadic groups” (such as the Monster)



Timeline of the classification

1832 Galois introduced normal subgroups, finds An

1872 Sylow Theorems proved
1892 Hölder asks for a classification of finite simple groups
1893 Cole classifies simple groups up to order 660

Work continued throughout the 1900s and culminated in 2004

Some mathematicians who worked on this problem include:

Galois, Sylow, Hölder, Cole, Jordan,
Frobenius, Dickson, Burnside, Conway, Gorenstein, Harada



Finitely generated groups

The group Z× Z2 is not cyclic, but it is finitely generated,

Z× Z2 = 〈(1, 0), (0, 1)〉

Theorem (Fundamental Theorem of Finitely Generated Groups)

Any finitely generated group is isomorphic to

Zt × Zp
r1
1
× Zp

r2
2
× · · ·× Zprss

for some primes p1 . . . , ps and positive integer powers t, r1, . . . , rs



How?

group actions

Class equation

Burnside’s lemma

composition series

p-groups and Sylow theorems



PIDs

An integral domain R is a principal ideal domain (PID) if every
ideal I of R can be generated by a single element

Example

Z, Zn

any field

R[x ] but not Z[x ]



Irreducible and prime elements

Let R be an integral domain

a unit in R is an element with a multiplicative inverse

an non-zero and non-unit element a ∈ R is irreducible if
a = bc implies that either b or c is a unit

elements a and b in R are associates if a = ub for a unit u

Example

In R[x ], the elements x and 2x are associates and irreducible

In Z, prime numbers are irreducible



UFDs

Theorem (Fundamental Theorem of Arithmetic)

1 Any positive integer can be written as a product of primes

2 This product is unique up to reordering

Definition

An integral domain is a unique factorization domain (UFD) if

1 any element can be written as a product of irreducibles

2 this product is unique up to reordering and associates



PIDs and UFDs

Theorem

PID =⇒ UFD, but the converse is false

Example

Z

1 +

√
−19

2


is a UFD but not a PID



Other classes of rings

Euclidean domains: integral domains with a division algorithm

Noetherian

Artinian

Local

Regular local

Regular



Varieties

Figure: V(y − x2) Figure: V

x2 + (y − 1)2 − 1





Varieties

V

y − x2, x2 + (y − 1)2 − 1



=

(0, 0), (±1, 1)


⊆ C2



Varieties ↔ Ideals

V = V(f1, . . . , fr ) ⊆ Cn

↭
I(V ) = 〈f1, . . . , fr 〉 ⊆ C[x1, . . . , xn]



Coordinate ring

Let V ⊆ Cn be a variety

The coordinate ring C[V ] of V is the ring of polynomials in n
variables whose domain is V

Example

Let V = V(x2 + y2 − 1) ⊆ C2

f (x , y) = 0

g(x , y) = y − x2 = y + y2 − 1 on V

h(x , y) = x2 + y2 − 1 = 0 on V , since h ∈ I(V )



Coordinate ring

Let V ⊆ Cn be a variety

Define a homomorphism of rings

ϕ :C[x1, . . . , xn] → C[x1, . . . , xn]
ϕ(f ) = f |V

by restriction to V

the image of ϕ is C[V ]

kerϕ = I(V )

C[V ] ∼= C[x1, . . . , xn]/I(V )



Algebra “sees” geometry

V = V(y − x2) ⊆ C2 C[V ] ∼= C[x , y ]/〈y − x2〉 ∼= C[x ]

V “irreducible” I(V ) prime C[V ] integral domain



Algebra “sees” geometry

V = V

(y − x)(y + x)


C[V ] ∼= C[x , y ]/〈y2 − x2〉

I(V ) not prime C[V ] not an integral domain
V “reducible” y − x /∈ I(V )

y + x /∈ I(V ) (y − x)(y + x) ∈ I(X )



Morphisms and isomorphisms

Let V ⊆ Cn and W ⊆ Cm be varieties

A map of varieties ϕ : V → W is of the form

ϕ(a1, . . . , an) =

f1(a1, . . . , an), . . . , fm(a1, . . . , an)



where each fi is a polynomial in n variables

An isomorphism is a bijective map that admits an inverse; we say
that V and W are isomorphic



Example of an isomorphism

V = V(0) = C W = V(y − x2) ⊆ C2

ϕ : V → W

ϕ(t) = (t, t2)

ψ : W → V

ψ(u, v) = u

C[V ] ∼=
C[t]
〈0〉 = C[t] C[W ] ∼=

C[x , y ]
〈y − x2〉

∼= C[x ]



Isomorphisms of varieties and coordinate rings

Theorem

Let V ⊆ Cn and W ⊆ Cm be varieties

V ∼= W if and only if C[V ] ∼= C[W ]



Nodal cubic

Figure: V = V(y2 − x3 − x2)

Question: V ∼= C?

C[V ] ∼=
C[x , y ]

〈y2 − x3 − x2〉 ∕∼= C[t]

In C[V ],

y2 = y · y
= x2(x + 1)

C[V ] is not a UFD, but C[t] is

So V ∕∼= C



Twisted cubic

Figure: V = V(y − x2, z − x3)

Desmos 3D Link

V ∼= C

C[V ] ∼=
C[x , y , z ]

〈y − x2, z − x3〉
∼= C[x , x2, x3]
∼= C[x ]

https://www.desmos.com/3d/f1ac3309b3


Cuspidal cubic

Figure: V = V(y3 − x2)

V ∕∼= C

C[V ] ∼=
C[x , y ]

〈y3 − x2〉

Not a UFD:

y3 = y · y · y = x · x



What else?

“Classical” algebraic geometry

intersection theory

Schubert calculus

Connections to number theory

Arithmetic and elliptic curves

Computational algebraic geometry (Math 4ET3)

Gröbner bases

degeneration (initial ideals)



Reading

Groups and Rings

Judson, Chapters 13–15, 17, 18, 21

Dummit and Foote. Abstract Algebra

Algebraic Geometry

Karen Smith et al. Invitation to Algebraic Geometry

Cox, Little, and O’Shea. Ideals, Varieties, and Algorithms


