Math 3GR3, Tutorial 11

Mike Cummings

November 28, 2023

Topics: Rings. Integral domains, etc. Isomorphisms.
Question 1. Give an example of...
(a) a noncommutative ring;
(b) a ring without (multiplicative) identity (AKA a rng);
(c) a ring with identity that is not a division ring;
(d) a commutative ring with identity that is not an integral domain;
(e) an integral domain that is not a field.

Question 2. Show that $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{C}$. [Hint: recall from linear algebra that if z is a root of a polynomial in $\mathbb{R}[x]$, then so is \bar{z}.]

Question 3 (Judson 16.6.26). Let R be an integral domain. If the only ideals of R are $\{0\}$ and R itself, then show that R is a field.

Question 4. A principal ideal domain (PID) is an integral domain D for which every ideal $I \subseteq D$ can be generated by a single element, e.g., there exists some $a \in D$ such that $I=\langle a\rangle$. Show that the integers \mathbb{Z} form a PID.

Think about how you might adapt your argument to show that $\mathbb{R}[x]$ is a PID.
Question 5 (Judson 16.6.27). Let R be a commutative ring. An element a of R is called nilpotent if $a^{n}=0$ for some positive integer n. Show that the set of all nilpotent elements is an ideal of R.

