Math 3GR3 Tutorial Problems

Mike Cummings

Fall 2023

Tutorial 1

Question 1. Recall that an equivalence relation is a relation on a nonempty set that is reflexive, symmetric, and transitive. Explain why the following relations are not equivalence relations.
(a) $x \sim y$ in \mathbb{R} if $x \neq y$
(b) $x \sim y$ in \mathbb{C} if $x \leq y$
(c) Let $\operatorname{Mat}_{n}(\mathbb{Q})$ denote $n \times n$ matrices with entries in \mathbb{Q}. Define $A \sim B$ in $\operatorname{Mat}_{n}(\mathbb{Q})$ if $\operatorname{det}(A B)<0$.

Question 2 (Judson Chapter 1, Exercise 29. The projective real line). Define a relation on $\mathbb{R}^{2} \backslash\{(0,0)\}$ by letting $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if there exists a nonzero real number λ such that $\left(x_{1}, y_{1}\right)=$ $\left(\lambda x_{2}, \lambda y_{2}\right)$.
(a) Prove that \sim defines an equivalence relation on $\mathbb{R}^{2} \backslash\{(0,0)\}$.
(b) What are the corresponding equivalence classes?

Question 3 (Lakins Exercise 6.2.1(c)). Compute gcd(7776, 16650) and find integers x, y such that $7776 x+16650 y=\operatorname{gcd}(a, b)$.

Question 4 (Judson 2.4.16). Let a and b be nonzero integers. If there exist integers r and s such that $a r+b s=1$, show that a and b are relatively prime.

Question 5 (Judson 2.4.24). If $d=\operatorname{gcd}(a, b)$ and $m=\operatorname{lcm}(a, b)$, prove that $d m=|a b|$.
Question 6. Let p be a prime number.
(a) (Lakins Exercise 6.3.6) If i is an integer satisfying $0<i<p$, show that $\binom{p}{i} \equiv 0 \bmod p$. That is, show that p divides $\binom{p}{i}$.
(b) Give an example to show that (a) fails if p is not prime.
(c) (Freshman's dream) Let a and b be integers. Using (a), show that $(a+b)^{p} \equiv a^{p}+b^{p} \bmod p$. [Hint: binomial theorem.]

Tutorial 2

Question 7. Course webpage: https://math.mcmaster.ca/~matt/3gr3/index.html.

- Use the Sage cell on the course webpage
- Open online version of the course textbook
- Enter the following commands:

```
a = 11
b = 77115025
gcd(a, b)
>> run cell
```

\# Q: what does the following output give us?
$\operatorname{xgcd}(a, b)$

For fun:

```
for g in graphs(4):
```

```
if not g.is_connected():
        continue
```

 g.show()
 print('\n')
 Question 8. Which of the following Cayley tables form a group?
(a) [Judson Exercise 3.5.2(a)]

\circ	a	b	c	d
a	a	c	d	a
b	b	b	c	d
c	c	d	a	b
d	d	a	b	c

(b)

	e	w	x	y	z
e	e	w	x	y	z
w	w	e	y	z	x
x	x	z	e	w	y
y	y	x	z	e	w
z	z	y	w	x	e

Question 9. Compute the Cayley tables of the following additive groups:
(a) \mathbb{Z}_{4},
(b) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Question 10 (Judson Exercise 3.5.7). Let $S=\mathbb{R} \backslash\{-1\}$ and define a binary operation on S by $a * b=a+b+a b$. Prove that $(S, *)$ is an abelian group.

Question 11 (Judson Exercise 3.5.32). Let G be a group with a finite and even number of elements. Show that there exists some nonidentity $a \in G$ such that $a^{2}=e$.

Tutorial 3

Question 12 (Judson 3.5.17). Give an example of three different groups with 8 elements. Why are the groups different?

Aside: Much of abstract algebra in the 20th century was devoted to the "classification problem", determining exactly how many unique groups with n elements there are, for each n. In the case of finite simple groups, this was solved in ~ 2004, culminating the work of around 100 authors spanning half a century.

The takeaway is this: questions like the previous question are very difficult in general. Later in the course, we will learn what it means for a group to be simple, and the notion of isomorphic groups, that is, when are two groups "the same".

Question 13 (Judson 3.5.47). Prove or disprove: If H and K are subgroups of a group G, then $H K:=\{h k \mid h \in H$ and $k \in K\}$ is a subgroup of G. What if G is abelian?

Question 14 (Judson 3.5.52). Prove or disprove: Every proper subgroup of a nonabelian group is also nonabelian.

Question 15 (Judson 4.5.26). Prove that \mathbb{Z}_{p} has no nontrivial subgroups if p is prime.
Question 16 (Judson 4.5.30). Suppose that G is a group and let $a, b \in G$. Prove that if $|a|=m$ and $|b|=n$, with $\operatorname{gcd}(m, n)=1$, then $\langle a\rangle \cap\langle b\rangle=\{e\}$.

Question 17 (Judson 4.5.34). Let G be an abelian group of order $p q$ where $\operatorname{gcd}(p, q)=1$. If G contains elements a and b of order p and q respectively, then show that G is cyclic.

Tutorial 4

Question 18. Recall that subgroups of a cyclic group are cyclic.
True or false? Fix an integer $n>1$. Since \mathbb{Z} is cyclic, so is $U(n)$.
Question 19. Let p be prime and r a positive integer. What are the generators of $\mathbb{Z}_{p^{r}}$? How many are there?

Question 20. Compute A^{1223} for the permutation $A \in S_{9}$ given by

$$
A=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 1 & 4 & 5 & 4 & 7 & 8 & 9 & 6
\end{array}\right) .
$$

Question 21 (Judson 3.5.35). Find all the subgroups of the symmetry group of an equilateral triangle.

Question 22. Let H be a subgroup of a group G and fix some $g \in G$. Show that $g H g^{-1}$ is also a subgroup of G.

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} .
$$

Question 23. Fix a subgroup $H=\left\{i d, \rho_{1}, \rho_{2}\right\}$ of the group of symmetries of the equilateral triangle. Compute $\mu_{1} H \mu_{1}^{-1}=\mu_{1} H \mu_{1}$.

Question 24. Let G be an abelian group of order $p q$ with elements a and b of orders p and q, respectively. If $\operatorname{gcd}(p, q)=1$, then show that G is cyclic.

Tutorial 5

This was the review session for test 1 . We didn't end up going through any of the prepared problems, but they are listed here anyway.

Question 25 (Judson 5.4.9). Does A_{8} contain an element of order $26 ?$
Question 26 (Judson 5.4.33). Suppose a permutation α satisfies $\alpha \beta=\beta \alpha$ for all $\beta \in S_{n}$. Show that α must be the identity.

Question 27 (Judson 5.4.34). If α is even, show that α^{-1} is too. Does the corresponding result hold if α is odd?

Question 28 (Judson 5.4.37). Let r and s be a rotation and reflection in D_{n}. Show that $s r s=r^{-1}$ and that $r^{k} s=s r^{-k}$.

Question 29 (Judson 5.4.5). Find each of the following sets. Are any of these sets subgroups of S_{4} ?
(a) $A=\left\{\sigma \in S_{4} \mid \sigma(1)=3\right\}$
(b) $B=\left\{\sigma \in S_{4} \mid \sigma(2)=2\right\}$
(c) $C=\left\{\sigma \in S_{4} \mid \sigma(1)=3\right.$ and $\left.\sigma(2)=2\right\}$

Tutorial 6

Question 30 (Judson 6.5.5). Describe the left and right cosets of
(a) $\langle 3\rangle$ in $U(8)$,
(b) D_{4} in S_{4},
(c) A_{n} in S_{n} for all n.

Question 31 (Judson 6.5.17). Suppose that $[G: H]=2$. If a and b are not in H, show that $a b \in H$.

Question 32 (Judson 6.5.16). If $|G|=2 n$, prove that the number of elements of order 2 is odd. Use this result to show that G must contain a subgroup of order 2 .

Question 33 (Judson 5.4.5). Write out the elements of the following subset of S_{4} (e.g., in permutation notation). Is it a subgroup of S_{4} ?

$$
S=\left\{\sigma \in S_{4} \mid \sigma(1)=(3)\right\} .
$$

Tutorial 7

Question 34. Partition the group G of symmetries of a triangle by left cosets of $H=\left\{e, \mu_{1}\right\}$. Recall that the Cayley table for G is as follows.

\circ	e	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
e	e	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
ρ_{1}	ρ_{1}	ρ_{2}	e	μ_{3}	μ_{1}	μ_{2}
ρ_{2}	ρ_{2}	e	ρ_{1}	μ_{2}	μ_{3}	μ_{1}
μ_{1}	μ_{1}	μ_{2}	μ_{3}	e	ρ_{1}	ρ_{2}
μ_{2}	μ_{2}	μ_{3}	μ_{1}	ρ_{2}	e	ρ_{1}
μ_{3}	μ_{3}	μ_{1}	μ_{2}	ρ_{1}	ρ_{2}	e

With this example as motivation, let us review Lemma 6.3.
Lemma 6.3. Let H be a subgroup of G and pick $g_{1}, g_{2} \in G$. The following are equivalent.
(i) $g_{1} H=g_{2} H$
(ii) $H g_{1}^{-1}=H g_{2}^{-1}$
(iii) $g_{1} H \subset g_{2} H$
(iv) $g_{2} \in g_{1} H$
(v) $g_{1}^{-1} g_{2} \in H$

For instance, in the above example, $\mu_{3} H=\rho_{1} H$ since $\mu_{3} \in \rho_{1} H$.
Question 35 (Judson 6.5.8). Prove that \mathbb{Q} is not isomorphic to \mathbb{Z}.
Question 36 (Judson 9.4.7). Show any cyclic group G of order n is isomorphic to \mathbb{Z}_{n}.
Question 37 (Judson 9.4.2). Let G be the subgroup of $\mathbf{G L}_{2}(\mathbb{R})$ consisting of matrices of the following form.

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

Show that $G \cong \mathbb{C}^{*}$.

Tutorial 8

Question 38. True or false? Justify your answers.
(a) $U(20) \cong U(24)$.
(b) Any subgroup of S_{3} is normal.
(c) A_{n} is always normal in S_{n}.
(d) Every subgroup of a cyclic group is normal.
(e) Every group has at least 2 distinct normal subgroups.

Recall: Theorem 10.3. Let N be a subgroup of G. The following are equivalent:
(a) N is normal in G,
(b) $g N g^{-1}=N$,
(c) $g N g^{-1} \subseteq N$.

Question 39. Let $T=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$ be the multiplicative subgroup of complex numbers lying on the unit circle and let \mathbb{R}^{+}be the multiplicative group of positive real numbers. Show that $\mathbb{C}^{*} \cong \mathbb{R}^{+} \times T$.
Question 40 (Dummit-Foote 3.1.34). Consider the dihedral group D_{n}. Fix an integer k dividing n. Show that the cyclic subgroup $\left\langle r^{k}\right\rangle$ is a normal subgroup of D_{n}.
Question 41. Suppose N is a subgroup of G such that if $g \in G$, then $g^{2} \in N$. Show that N is normal.
Question 42. Prove or disprove: if a group G has normal subgroups N and K such that $N \cong K$, then $G / N \cong G / K$.

Tutorial 9

This was the review session for test 2 . No questions were prepared.

Tutorial 10

Question 43 (Modified from Judson exercise 11.4.13). Consider the following statement:

$$
\mathbb{Q} / \mathbb{Z} \text { and } \mathbb{Q} \text { are isomorphic as groups. }
$$

(a) ChatGPT proved this statement as follows. Find the mistake(s).

Proof. To show that $\mathbb{Q} / \mathbb{Z} \cong \mathbb{Q}$ as groups, we need to find a group isomorphism between them. Let's define a map $\phi: \mathbb{Q} / \mathbb{Z} \rightarrow \mathbb{Q}$ as follows:

$$
\phi\left(\frac{a}{b}+\mathbb{Z}\right)=\frac{a}{b},
$$

where $\frac{a}{b} \in \mathbb{Q}$ is a rational number, and we identify it with its coset $\frac{a}{b}+\mathbb{Z}$ in \mathbb{Q} / \mathbb{Z}.
First, we need to show that ϕ is well-defined. Suppose $\frac{a}{b}+\mathbb{Z}=\frac{c}{d}+\mathbb{Z}$. This means $a d=b c$. Since b and d are coprime (having no common factors other than 1), it follows that b divides c, say $c=b k$. Now, we have $\frac{a}{b}=\frac{b k}{d}$, and since b and d are coprime, b divides k, say $k=b m$. Thus, $\frac{a}{b}=\frac{b \cdot b m}{d}=\frac{b^{2} m}{d}$, which shows that $\frac{a}{b}=\frac{b^{2} m}{d}+\mathbb{Z}$. So, the choice of representative does not matter, and ϕ is well-defined.
Next, we need to show that ϕ is a group homomorphism. Let $\frac{a}{b}+\mathbb{Z}$ and $\frac{c}{d}+\mathbb{Z}$ be two elements in \mathbb{Q} / \mathbb{Z}. Then,

$$
\begin{aligned}
\phi\left(\left(\frac{a}{b}+\mathbb{Z}\right)+\left(\frac{c}{d}+\mathbb{Z}\right)\right) & =\phi\left(\frac{a}{b}+\frac{c}{d}+\mathbb{Z}\right) \\
& =\phi\left(\frac{a d+b c}{b d}+\mathbb{Z}\right) \\
& =\frac{a d+b c}{b d} \\
& =\frac{a}{b}+\frac{c}{d} \\
& =\phi\left(\frac{a}{b}+\mathbb{Z}\right)+\phi\left(\frac{c}{d}+\mathbb{Z}\right) .
\end{aligned}
$$

This shows that ϕ preserves the group operation.
Now, let's show that ϕ is injective. Suppose $\phi\left(\frac{a}{b}+\mathbb{Z}\right)=\phi\left(\frac{c}{d}+\mathbb{Z}\right)$. This implies $\frac{a}{b}=\frac{c}{d}$, which, in turn, means $a d=b c$. Since b and d are coprime, this forces $a=c$ and $b=d$, so $\frac{a}{b}+\mathbb{Z}=\frac{c}{d}+\mathbb{Z}$. Thus, ϕ is injective.
Finally, let's show that ϕ is surjective. For any $\frac{a}{b} \in \mathbb{Q}$, we have $\phi\left(\frac{a}{b}+\mathbb{Z}\right)=\frac{a}{b}$, so ϕ is surjective.

Since ϕ is a well-defined, injective, and surjective group homomorphism, it is an isomorphism, and we can conclude that $\mathbb{Q} / \mathbb{Z} \cong \mathbb{Q}$ as groups.
(b) Determine whether the statement is true or false. If it is true, fix ChatGPT's proof to show that they are isomorphic. If it is false, give a proof that they are not isomorphic.

Question 44. Recall that \mathbb{R}^{*} is a multiplicative group and \mathbb{R} is an additive group. Show that $\mathbb{R}^{*} /\{ \pm 1\} \cong \mathbb{R}$.

Question 45 (Judson 16.6.34). Let p be a prime integer. Prove that the ring of integers localized at p, given by

$$
\mathbb{Z}_{(p)}=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, \operatorname{gcd}(b, p)=1\right\}
$$

is a ring, and moreover, that it is an integral domain. Determine the characteristic of $\mathbb{Z}_{(p)}$.

Tutorial 11

Question 46. Give an example of...
(a) a noncommutative ring;
(b) a ring without (multiplicative) identity (AKA a rng);
(c) a ring with identity that is not a division ring;
(d) a commutative ring with identity that is not an integral domain;
(e) an integral domain that is not a field.

Question 47. Show that $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{C}$. [Hint: recall from linear algebra that if z is a root of a polynomial in $\mathbb{R}[x]$, then so is \bar{z}.]

Question 48 (Judson 16.6.26). Let R be an integral domain. If the only ideals of R are $\{0\}$ and R itself, then show that R is a field.

Question 49. A principal ideal domain (PID) is an integral domain D for which every ideal $I \subseteq D$ can be generated by a single element, e.g., there exists some $a \in D$ such that $I=\langle a\rangle$. Show that the integers \mathbb{Z} form a PID.

Think about how you might adapt your argument to show that $\mathbb{R}[x]$ is a PID.
Question 50 (Judson 16.6.27). Let R be a commutative ring. An element a of R is called nilpotent if $a^{n}=0$ for some positive integer n. Show that the set of all nilpotent elements is an ideal of R.

