Math 3GR3 Tutorial Problems

Mike Cummings

Fall 2023

Tutorial 1

Question 1. Recall that an equivalence relation is a relation on a nonempty set that is reflexive, symmetric, and transitive. Explain why the following relations are not equivalence relations.

- (a) $x \sim y$ in \mathbb{R} if $x \neq y$
- (b) $x \sim y$ in \mathbb{C} if $x \leq y$
- (c) Let $\operatorname{Mat}_n(\mathbb{Q})$ denote $n \times n$ matrices with entries in \mathbb{Q} . Define $A \sim B$ in $\operatorname{Mat}_n(\mathbb{Q})$ if $\det(AB) < 0$.

Question 2 (Judson Chapter 1, Exercise 29. The projective real line). Define a relation on $\mathbb{R}^2 \setminus \{(0,0)\}$ by letting $(x_1, y_1) \sim (x_2, y_2)$ if there exists a nonzero real number λ such that $(x_1, y_1) = (\lambda x_2, \lambda y_2)$.

- (a) Prove that ~ defines an equivalence relation on $\mathbb{R}^2 \setminus \{(0,0)\}$.
- (b) What are the corresponding equivalence classes?

Question 3 (Lakins Exercise 6.2.1(c)). Compute gcd(7776, 16650) and find integers x, y such that 7776x + 16650y = gcd(a, b).

Question 4 (Judson 2.4.16). Let a and b be nonzero integers. If there exist integers r and s such that ar + bs = 1, show that a and b are relatively prime.

Question 5 (Judson 2.4.24). If $d = \gcd(a, b)$ and $m = \operatorname{lcm}(a, b)$, prove that dm = |ab|.

Question 6. Let p be a prime number.

- (a) (Lakins Exercise 6.3.6) If *i* is an integer satisfying 0 < i < p, show that $\binom{p}{i} \equiv 0 \mod p$. That is, show that p divides $\binom{p}{i}$.
- (b) Give an example to show that (a) fails if p is not prime.
- (c) (Freshman's dream) Let a and b be integers. Using (a), show that $(a + b)^p \equiv a^p + b^p \mod p$. [Hint: binomial theorem.]

Tutorial 2

Question 7. Course webpage: https://math.mcmaster.ca/~matt/3gr3/index.html.

- Use the Sage cell on the course webpage
- Open online version of the course textbook
- Enter the following commands:

```
a = 11
b = 77115025
gcd(a, b)
>> run cell
```

```
# Q: what does the following output give us?
xgcd(a, b)
```

For fun:

```
for g in graphs(4):
```

```
if not g.is_connected():
    continue
g.show()
print('\n')
```

Question 8. Which of the following Cayley tables form a group?

(a)	[Judson Exercise 3.5.2(a)]								e	w	x	y	z
								e	e	w	x	y	z
		0	a	b	c	d	(b)	w	w	e	y	z	x
		a	a	c	d	a	(6)	x	x	z	e	w	y
		b	b	b	c	d		y	y	x	z	e	w
		c	c	d	a	b		z	z	y	w	x	e
		d	d	a	b	c							

Question 9. Compute the Cayley tables of the following additive groups:

(a) \mathbb{Z}_4 , (b) $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Question 10 (Judson Exercise 3.5.7). Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.

Question 11 (Judson Exercise 3.5.32). Let G be a group with a finite and even number of elements. Show that there exists some *nonidentity* $a \in G$ such that $a^2 = e$.

Tutorial 3

Question 12 (Judson 3.5.17). Give an example of three different groups with 8 elements. Why are the groups different?

Aside: Much of abstract algebra in the 20th century was devoted to the "classification problem", determining exactly how many unique groups with n elements there are, for each n. In the case of finite *simple* groups, this was solved in ~2004, culminating the work of around 100 authors spanning half a century.

The takeaway is this: questions like the previous question are very difficult in general. Later in the course, we will learn what it means for a group to be simple, and the notion of *isomorphic* groups, that is, when are two groups "the same".

Question 13 (Judson 3.5.47). Prove or disprove: If H and K are subgroups of a group G, then $HK := \{hk \mid h \in H \text{ and } k \in K\}$ is a subgroup of G. What if G is abelian?

Question 14 (Judson 3.5.52). Prove or disprove: Every proper subgroup of a nonabelian group is also nonabelian.

Question 15 (Judson 4.5.26). Prove that \mathbb{Z}_p has no nontrivial subgroups if p is prime.

Question 16 (Judson 4.5.30). Suppose that G is a group and let $a, b \in G$. Prove that if |a| = m and |b| = n, with gcd(m, n) = 1, then $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Question 17 (Judson 4.5.34). Let G be an abelian group of order pq where gcd(p,q) = 1. If G contains elements a and b of order p and q respectively, then show that G is cyclic.

Tutorial 4

Question 18. Recall that subgroups of a cyclic group are cyclic.

True or false? Fix an integer n > 1. Since \mathbb{Z} is cyclic, so is U(n).

Question 19. Let p be prime and r a positive integer. What are the generators of \mathbb{Z}_{p^r} ? How many are there?

Question 20. Compute A^{1223} for the permutation $A \in S_9$ given by

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 1 & 4 & 5 & 4 & 7 & 8 & 9 & 6 \end{pmatrix}$$

Question 21 (Judson 3.5.35). Find all the subgroups of the symmetry group of an equilateral triangle.

Question 22. Let *H* be a subgroup of a group *G* and fix some $g \in G$. Show that gHg^{-1} is also a subgroup of *G*.

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\}.$$

Question 23. Fix a subgroup $H = \{id, \rho_1, \rho_2\}$ of the group of symmetries of the equilateral triangle. Compute $\mu_1 H \mu_1^{-1} = \mu_1 H \mu_1$.

Question 24. Let G be an abelian group of order pq with elements a and b of orders p and q, respectively. If gcd(p,q) = 1, then show that G is cyclic.

Tutorial 5

This was the review session for test 1. We didn't end up going through any of the prepared problems, but they are listed here anyway.

Question 25 (Judson 5.4.9). Does A_8 contain an element of order 26?

Question 26 (Judson 5.4.33). Suppose a permutation α satisfies $\alpha\beta = \beta\alpha$ for all $\beta \in S_n$. Show that α must be the identity.

Question 27 (Judson 5.4.34). If α is even, show that α^{-1} is too. Does the corresponding result hold if α is odd?

Question 28 (Judson 5.4.37). Let r and s be a rotation and reflection in D_n . Show that $srs = r^{-1}$ and that $r^k s = sr^{-k}$.

Question 29 (Judson 5.4.5). Find each of the following sets. Are any of these sets subgroups of S_4 ?

(a) $A = \{ \sigma \in S_4 \mid \sigma(1) = 3 \}$ (b) $B = \{ \sigma \in S_4 \mid \sigma(2) = 2 \}$ (c) $C = \{ \sigma \in S_4 \mid \sigma(1) = 3 \text{ and } \sigma(2) = 2 \}$

Tutorial 6

Question 30 (Judson 6.5.5). Describe the left and right cosets of

- (a) $\langle 3 \rangle$ in U(8),
- (b) D_4 in S_4 ,
- (c) A_n in S_n for all n.

Question 31 (Judson 6.5.17). Suppose that [G : H] = 2. If a and b are not in H, show that $ab \in H$.

Question 32 (Judson 6.5.16). If |G| = 2n, prove that the number of elements of order 2 is odd. Use this result to show that G must contain a subgroup of order 2.

Question 33 (Judson 5.4.5). Write out the elements of the following subset of S_4 (e.g., in permutation notation). Is it a subgroup of S_4 ?

$$S = \{ \sigma \in S_4 \mid \sigma(1) = (3) \}.$$

Tutorial 7

Question 34. Partition the group G of symmetries of a triangle by left cosets of $H = \{e, \mu_1\}$. Recall that the Cayley table for G is as follows.

0	e	ρ_1	ρ_2	μ_1	μ_2	μ_3
e	e	ρ_1	ρ_2	μ_1	μ_2	μ_3
ρ_1	ρ_1	ρ_2	e	μ_3	μ_1	μ_2
ρ_2	ρ_2	e	ρ_1	μ_2	μ_3	μ_1
μ_1	μ_1	μ_2	μ_3	e	ρ_1	ρ_2
μ_2	μ_2	μ_3	μ_1	ρ_2	e	ρ_1
μ_3	μ_3	μ_1	μ_2	ρ_1	ρ_2	e

With this example as motivation, let us review Lemma 6.3.

Lemma 6.3. Let H be a subgroup of G and pick $g_1, g_2 \in G$. The following are equivalent.

- (i) $g_1H = g_2H$
- (ii) $Hg_1^{-1} = Hg_2^{-1}$
- (iii) $g_1 H \subset g_2 H$
- (iv) $g_2 \in g_1 H$
- (v) $g_1^{-1}g_2 \in H$

For instance, in the above example, $\mu_3 H = \rho_1 H$ since $\mu_3 \in \rho_1 H$.

Question 35 (Judson 6.5.8). Prove that \mathbb{Q} is not isomorphic to \mathbb{Z} .

Question 36 (Judson 9.4.7). Show any cyclic group G of order n is isomorphic to \mathbb{Z}_n .

Question 37 (Judson 9.4.2). Let G be the subgroup of $\mathbf{GL}_2(\mathbb{R})$ consisting of matrices of the following form.

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

Show that $G \cong \mathbb{C}^*$.

Tutorial 8

Question 38. True or false? Justify your answers.

(a) $U(20) \cong U(24)$.

- (b) Any subgroup of S_3 is normal.
- (c) A_n is always normal in S_n .
- (d) Every subgroup of a cyclic group is normal.
- (e) Every group has at least 2 distinct normal subgroups.

Recall: Theorem 10.3. Let N be a subgroup of G. The following are equivalent:

- (a) N is normal in G,
- (b) $gNg^{-1} = N$,
- (c) $gNg^{-1} \subseteq N$.

Question 39. Let $T = \{z \in \mathbb{C}^* \mid |z| = 1\}$ be the multiplicative subgroup of complex numbers lying on the unit circle and let \mathbb{R}^+ be the multiplicative group of positive real numbers. Show that $\mathbb{C}^* \cong \mathbb{R}^+ \times T$.

Question 40 (Dummit–Foote 3.1.34). Consider the dihedral group D_n . Fix an integer k dividing n. Show that the cyclic subgroup $\langle r^k \rangle$ is a normal subgroup of D_n .

Question 41. Suppose N is a subgroup of G such that if $g \in G$, then $g^2 \in N$. Show that N is normal.

Question 42. Prove or disprove: if a group G has normal subgroups N and K such that $N \cong K$, then $G/N \cong G/K$.

Tutorial 9

This was the review session for test 2. No questions were prepared.

Tutorial 10

Question 43 (Modified from Judson exercise 11.4.13). Consider the following statement:

 \mathbb{Q}/\mathbb{Z} and \mathbb{Q} are isomorphic as groups.

(a) ChatGPT proved this statement as follows. Find the mistake(s).

Proof. To show that $\mathbb{Q}/\mathbb{Z} \cong \mathbb{Q}$ as groups, we need to find a group isomorphism between them. Let's define a map $\phi : \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}$ as follows:

$$\phi\left(\frac{a}{b} + \mathbb{Z}\right) = \frac{a}{b}$$

where $\frac{a}{b} \in \mathbb{Q}$ is a rational number, and we identify it with its coset $\frac{a}{b} + \mathbb{Z}$ in \mathbb{Q}/\mathbb{Z} .

First, we need to show that ϕ is well-defined. Suppose $\frac{a}{b} + \mathbb{Z} = \frac{c}{d} + \mathbb{Z}$. This means ad = bc. Since b and d are coprime (having no common factors other than 1), it follows that b divides c, say c = bk. Now, we have $\frac{a}{b} = \frac{bk}{d}$, and since b and d are coprime, b divides k, say k = bm. Thus, $\frac{a}{b} = \frac{b \cdot bm}{d} = \frac{b^2 m}{d}$, which shows that $\frac{a}{b} = \frac{b^2 m}{d} + \mathbb{Z}$. So, the choice of representative does not matter, and ϕ is well-defined.

Next, we need to show that ϕ is a group homomorphism. Let $\frac{a}{b} + \mathbb{Z}$ and $\frac{c}{d} + \mathbb{Z}$ be two elements in \mathbb{Q}/\mathbb{Z} . Then,

$$\phi\left(\left(\frac{a}{b} + \mathbb{Z}\right) + \left(\frac{c}{d} + \mathbb{Z}\right)\right) = \phi\left(\frac{a}{b} + \frac{c}{d} + \mathbb{Z}\right)$$
$$= \phi\left(\frac{ad + bc}{bd} + \mathbb{Z}\right)$$
$$= \frac{ad + bc}{bd}$$
$$= \frac{a}{b} + \frac{c}{d}$$
$$= \phi\left(\frac{a}{b} + \mathbb{Z}\right) + \phi\left(\frac{c}{d} + \mathbb{Z}\right).$$

This shows that ϕ preserves the group operation.

Now, let's show that ϕ is injective. Suppose $\phi\left(\frac{a}{b} + \mathbb{Z}\right) = \phi\left(\frac{c}{d} + \mathbb{Z}\right)$. This implies $\frac{a}{b} = \frac{c}{d}$, which, in turn, means ad = bc. Since b and d are coprime, this forces a = c and b = d, so $\frac{a}{b} + \mathbb{Z} = \frac{c}{d} + \mathbb{Z}$. Thus, ϕ is injective.

Finally, let's show that ϕ is surjective. For any $\frac{a}{b} \in \mathbb{Q}$, we have $\phi\left(\frac{a}{b} + \mathbb{Z}\right) = \frac{a}{b}$, so ϕ is surjective.

Since ϕ is a well-defined, injective, and surjective group homomorphism, it is an isomorphism, and we can conclude that $\mathbb{Q}/\mathbb{Z} \cong \mathbb{Q}$ as groups.

(b) Determine whether the statement is true or false. If it is true, fix ChatGPT's proof to show that they are isomorphic. If it is false, give a proof that they are not isomorphic.

Question 44. Recall that \mathbb{R}^* is a multiplicative group and \mathbb{R} is an additive group. Show that $\mathbb{R}^*/\{\pm 1\} \cong \mathbb{R}$.

Question 45 (Judson 16.6.34). Let p be a prime integer. Prove that the ring of integers localized at p, given by

$$\mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \in \mathbb{Q} \mid \gcd(b, p) = 1 \right\},\$$

is a ring, and moreover, that it is an integral domain. Determine the characteristic of $\mathbb{Z}_{(p)}$.

Tutorial 11

Question 46. Give an example of...

- (a) a noncommutative ring;
- (b) a ring without (multiplicative) identity (AKA a rng);
- (c) a ring with identity that is not a division ring;
- (d) a commutative ring with identity that is not an integral domain;
- (e) an integral domain that is not a field.

Question 47. Show that $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{C}$. [Hint: recall from linear algebra that if z is a root of a polynomial in $\mathbb{R}[x]$, then so is \overline{z} .]

Question 48 (Judson 16.6.26). Let R be an integral domain. If the only ideals of R are $\{0\}$ and R itself, then show that R is a field.

Question 49. A principal ideal domain (PID) is an integral domain D for which every ideal $I \subseteq D$ can be generated by a single element, e.g., there exists some $a \in D$ such that $I = \langle a \rangle$. Show that the integers \mathbb{Z} form a PID.

Think about how you might adapt your argument to show that $\mathbb{R}[x]$ is a PID.

Question 50 (Judson 16.6.27). Let R be a commutative ring. An element a of R is called **nilpotent** if $a^n = 0$ for some positive integer n. Show that the set of all nilpotent elements is an ideal of R.