Math 2R03 Exam Review

19 April 2023

Contents

1 Knowledge Questions 1
2 Proof Questions 4

1 Knowledge Questions

The questions in this section are designed to test recall of basic definitions and properties. You should be able to answer them with only a moment's thought. An answer key is at the end of the section.

Question 1 (Subspaces). Let U and W be subspaces of a vector space V. Which of the following is always true?
(a) Both $U \cap W$ and $U \cup W$ are subspaces of V
(b) Only $U \cap W$ is a subspace of V
(c) Only $U \cup W$ is a subspace of V
(d) Neither $U \cap W$ nor $U \cup W$ is a subspace of V.

Question 2 (Isomorphisms). We will write $V \cong W$ if V and W are isomorphic. Which of the following is true? Consider all vector spaces as real vector spaces.
(a) $\mathbb{R}^{n} \cong \mathbb{C}^{n}$ and $\mathbb{R}^{n} \cong \mathcal{P}_{n}(\mathbb{R})$
(b) $\mathbb{R}^{n} \cong \mathbb{C}^{n}$ and $\mathbb{R}^{n} \cong \mathcal{P}_{n+1}(\mathbb{R})$
(c) $\mathbb{R}^{n} \cong \mathbb{C}^{2 n}$ and $\mathbb{R}^{n} \cong \mathcal{P}_{n-1}(\mathbb{R})$
(d) $\mathbb{R}^{2 n} \cong \mathbb{C}^{n}$ and $\mathbb{R}^{n+1} \cong \mathcal{P}_{n}(\mathbb{R})$

Question 3 (Fundamental Theorem of Algebra). Let $p \in \mathcal{P}(\mathbb{R})$ be a polynomial with real coefficients. Which of the following is not a possibility for the number of complex roots of p ?
(a) 0
(b) 1
(c) 2
(d) 4

Question 4 (Self-adjoint operators). Suppose $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ has matrix (with respect to the standard basis) given by $\left[\begin{array}{ll}2 & k \\ 3 & 7\end{array}\right]$. Then T is self-adjoint for which value(s) of k ?

Question 5 (Matrices). Suppose a linear transformation $T \in \mathcal{L}(V, W)$ has a matrix (with respect to some basis) that has a column of zeros. Which of the following is always true?
(a) T is neither injective nor surjective
(b) T is not injective
(c) T is not surjective
(d) T is both injective and surjective

Question 6 (Duals). Assume V and W are finite-dimensional vector spaces. Let $T \in \mathcal{L}(V, W)$ and take U to be a subspace of V. Which of the following is false?
(a) If T is surjective, then $T^{\prime}=0$
(b) The dual space V^{\prime} is a vector space
(c) $\operatorname{dim} V=\operatorname{dim} V^{\prime}$
(d) $\operatorname{dim} U+\operatorname{dim} U^{\circ}=\operatorname{dim} V$

Question 7 (Quotients). Let V be a finite-dimensional vector space and U a subspace of U. What is the dimension of V / U ?

Question 8 (Inner products). Consider the map $\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
(p, q)=\int_{0}^{\infty} p(x) q(x) e^{-x} d x
$$

for any $p, q \in \mathcal{P}(\mathbb{R})$. Is this map an inner product? If not, which property/properties from the definition is/are not satisfied?

Question 9 (Normal operators). Let V be a finite-dimensional real inner product space. Define

$$
\begin{aligned}
A & :=\{T \in \mathcal{L}(V) \mid T \text { is self-adjoint }\}, \\
N & :=\{T \in \mathcal{L}(V) \mid T \text { is normal }\} .
\end{aligned}
$$

Is $A \subset N$ or $N \subset A$ (or neither)? Are either a subspace of $\mathcal{L}(V)$? What if V is a complex vector space?

Question 10 (Diagonalization). Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. Which of the following is not equivalent to the others?
(a) T is diagonalizable
(b) V has a basis of eigenvectors of T
(c) $V=E\left(\lambda_{1}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)$
(d) T has $\operatorname{dim} V$ distinct eigenvalues

Question 11 (Eigenvalues). Consider the "shift" operators $R, L \in \mathcal{L}\left(\mathbb{C}^{\infty}\right)$ given by

$$
\begin{aligned}
& R\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right), \\
& L\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right) .
\end{aligned}
$$

Find an eigenvalue of each, if one exists.
Question 12 (Dimension). Compute the dimension of the following real vector spaces.
(i) $\operatorname{Mat}_{n \times m}(\mathbb{C})$
(ii) $\mathcal{P}_{n+1}(\mathbb{C})$
(iii) $\operatorname{dim} \mathbb{C}^{n}$

Question 13 (Orthogonal complements). Let V be a finite-dimensional inner product space V with subspace U. Which of the following is false?
(a) null $P_{U}=U^{\perp}$
(b) $\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U$
(c) $\operatorname{dim} P_{U}^{2}=P_{U}$
(d) $\left\|P_{U} v\right\|=\|v\|$ for all $v \in V$

Question 14 (Linear maps). Which of the following is not a linear map on $\mathcal{P}(\mathbb{R})$?

1. $T p=p^{\prime}$
2. $T p=3 p$
3. $T p=x p$
4. $T p=p^{2}$

Question 15 (Spectral Theorem). Let V be a complex inner product space and $T \in \mathcal{L}(V)$. Which of the following is not an equivalence guaranteed by the Complex Spectral Theorem?
(a) T is self-adjoint
(b) T is normal
(c) V has an orthonormal basis consisting of eigenvectors of T
(d) T has a diagonal matrix with respect to some orthonormal basis of V.
answers follow

	Answers				
1. (b)	6. (a)	11. R has no eigenvalues; $\lambda=1$ for L			
2. (d)	7. $(\operatorname{dim} V)-(\operatorname{dim} U)$	12. (i) $2 n m \quad$ (ii) $2(n+2)$ (iii) $2 n$			
3. (b)	8. It is an inner product				
4. $k=3$	9. $A \subset N$ and A is a subspace over \mathbb{R} but not \mathbb{C}	13. (d)			
14. (d)					
5. (b)	10. (d)	15. (a)			

2 Proof Questions

The questions in this section are exercises from the suggested problems/assignments/tutorials. Sketches of solutions/proofs are provided. These sketches ask "why?" whenever additional justification is needed. When reading these sketches, you should try and fill in these details. You should try the problems first before looking at the sketches below.

The exercises covered are:

- 3.E. 13
- 3.F. 9
- 5.B. 3
- 5.C. 1
- 6.A. 7
- 6.B. 1
- 6.C. 11
- 7.A. 2

Exercise (Axler 3.E.13). Suppose U is a subspace of $V, v_{1}+U, \ldots, v_{m}+U$ is a basis of V / U, and u_{1}, \ldots, u_{n} is a basis of U. Prove that $v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{n}$ is a basis of V.

Solution. We are required to show that the list both spans V and is linearly independent.
To see that it spans, let $w \in V$ and consider $w+U$. Then

$$
w+U=\left(c_{1} v_{1}+\cdots+c_{m} v_{m}\right)+U
$$

for some c_{1}, \ldots, c_{m}. (Why?) Then $w-\left(c_{1} v_{1}+\cdots+c_{m} v_{m}\right) \in U$ (why?) and so we have

$$
w-\left(c_{1} v_{1}+\cdots+c_{m} v_{m}\right)=k_{1} u_{1}+\cdots+k_{n} u_{n}
$$

for some u_{1}, \ldots, u_{n}. Hence

$$
w=c_{1} v_{1}+\cdots c_{m} v_{m}+k_{1} u_{1}+\cdots+k_{n} u_{n}
$$

and $\operatorname{so} \operatorname{span}\left(v_{1}, \ldots, v_{m}, u_{1}, \ldots, u_{n}\right)=V$.
For linear independence, suppose that

$$
c_{1} v_{1}+\cdots+c_{m} v_{m}+k_{1} u_{1}+\cdots+k_{n} u_{n}=0 .
$$

This implies that

$$
c_{1} v_{1}+\cdots+c_{m} v_{m}=-\left(k_{1} u_{1}+\cdots+k_{n} u_{n}\right)
$$

so in particular, we notice that

$$
c_{1} v_{1}+\cdots+c_{m} v_{m} \in U
$$

This implies that

$$
c_{1}\left(v_{1}+U\right)+\cdots+c_{m}\left(v_{m}+U\right)=0+U .
$$

(Why?) So we conclude that $c_{1}=\cdots=c_{m}=0$, which in turn implies that $k_{1}=\cdots=k_{n}=0$.

The following exercise gives a way to write a given linear functional as a linear combination of the dual basis.

Exercise (Axler 3.F.9). Suppose that v_{1}, \ldots, v_{n} is a basis of V and $\varphi_{1}, \ldots, \varphi_{n}$ is the corresponding dual basis of V^{\prime}. Suppose $\psi \in V^{\prime}$. Prove that

$$
\psi=\psi\left(v_{1}\right) \varphi_{1}+\cdots+\psi\left(v_{n}\right) \varphi_{n}
$$

Solution. There exist scalars c_{1}, \ldots, c_{n} such that $\psi=c_{1} \varphi_{1}+\cdots+c_{n} \varphi_{n}$. (Why?) So it remains to show that $c_{i}=\psi\left(v_{i}\right)$ for all i. Fix some i and compute:

$$
\psi\left(v_{i}\right)=c_{i} \cdot \varphi_{i}\left(v_{i}\right)=c_{i} .
$$

(Why?) So $\psi=\psi\left(v_{1}\right) \varphi_{1}+\cdots+\psi\left(v_{n}\right) \varphi_{n}$.

Exercise (5.B.3). Suppose $T \in \mathcal{L}(V)$ and $T^{2}=I$ and -1 is not an eigenvalue of T. Prove that $T=I$.
Solution. Since $T^{2}=I$ we have $T^{2}-I=0$ or equivalently, $(T-I)(T+I)=0$. We conclude (why?) that $T-I=0$ (i.e., $(T-I) v=0$ for all $v \in V$) so $T=I$.

Exercise (5.C.1). Suppose $T \in \mathcal{L}(V)$ is diagonalizable. Prove that $V=\operatorname{null} T \oplus \operatorname{range} T$.
Solution. The result is clear if T is injective. (Why?)
So we treat the case that T is not injective. Since T is diagonalizable, we have that

$$
V=E\left(\lambda_{1}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{m}$ are the eigenvalues of T. Note that 0 is an eigenvalue of T and in particular, we have null $T=E(0, T)$. (Why?) Write $\lambda_{1}=0$ so label the remaining, nonzero eigenvalues (if they exist) are $\lambda_{2}, \ldots, \lambda_{m}$. It suffices to show that range $T=E\left(\lambda_{2}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)$.
$(\subseteq$) If $w \in \operatorname{range} T$ then there is some $v \in V$ such that $T v=w$. Since the eigenspaces form a direct sum of V, we have that $v=c_{1} v_{1}+\cdots+c_{m} c_{m}$ for $v_{i} \in E\left(\lambda_{i}, T\right)$. Then:

$$
\begin{align*}
w & =T v \\
& =T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}\right) \\
& =T\left(c_{2} v_{2}+\cdots+c_{m} v_{m}\right) \tag{Why?}\\
& =c_{2} \lambda_{2} v_{2}+\cdots+c_{m} \lambda_{m} v_{m},
\end{align*}
$$

so it follows that $w \in E\left(\lambda_{2}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)$.
(\supseteq) Let $v_{2}+\cdots+v_{m} \in E\left(\lambda_{2}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)$. Then

$$
T\left(\frac{1}{\lambda_{2}} v_{2}+\cdots+\frac{1}{\lambda_{m}} v_{m}\right)=v_{2}+\cdots+v_{m}
$$

since $\lambda_{i} \neq 0$ for all $i=2, \ldots, m$. Hence $v_{2}+\cdots+v_{m} \in$ range T.

Exercise (6.A.7). Suppose $u, v \in V$. Prove that $\|a u+b v\|=\|u b+a v\|$ for all $a, b \in \mathbb{R}$ if and only if $\|u\|=\|v\|$.

Solution. The forward direction is straightforward. (Why? Pick convenient values of a and b.)
Now suppose that $\|u\|=\|v\|$ and let $a, b \in \mathbb{R}$ be arbitrary. It is sufficient to show that $\| a u+$ $b v\left\|^{2}=\right\| b u+a v \|^{2}$. (Why?) You should fill in the missing steps in the following computation:

$$
\begin{align*}
\|a u+b v\|^{2} & =\langle a u+b v, a u+b v\rangle \\
& =a^{2}\|u\|^{2}+b^{2}\|v\|^{2}+\langle a v, b u\rangle+\langle b u, a v\rangle \\
& =a^{2}\|v\|^{2}+b^{2}\|u\|^{2}+\langle a v, b u\rangle+\langle b u, a v\rangle \tag{Why?}\\
& =\langle b u+a v, b u+a v\rangle .
\end{align*}
$$

Exercise (6.B.1).

(a) Suppose $\theta \in \mathbb{R}$. Show that the two lists $(\cos \theta, \sin \theta),(-\sin \theta, \cos \theta)$ and $(\cos \theta, \sin \theta),(\sin \theta,-\cos \theta)$ are orthonormal bases of \mathbb{R}^{2}.
(b) Show that any orthonormal basis of \mathbb{R}^{2} is of the form given by one of the two lists of part (a).

Solution.

(a) Note that we are equipping \mathbb{R}^{2} with the usual Euclidean inner product (i.e., the dot product). For each list, label the elements α, β. It is a straightforward computation to verify that:

- $\langle\alpha, \alpha\rangle=1$,
- $\langle\beta, \beta\rangle=1$,
- $\langle\alpha, \beta\rangle=0$,
as you should verify. Why is this sufficient to show that each list α, β is an orthonormal basis?
(b) What does an orthonormal basis of \mathbb{R}^{2} look like? Argue geometrically. (Note that the two vectors must lie on the unit circle. What else can you say?)

Exercise (6.C.11). In \mathbb{R}^{4} with the Euclidean inner product, let

$$
U=\operatorname{span}((1,1,0,0),(1,1,1,2))
$$

Find $u \in U$ such that $\|u-(1,2,3,4)\|$ is as small as possible.

Solution. By the result of $6.55(\mathrm{i})$, we are required to compute

$$
P_{U} v=\left\langle v, e_{1}\right\rangle e_{1}+\left\langle v, e_{2}\right\rangle e_{2},
$$

where $v-(1,2,3,4)$ and e_{1}, e_{2} is an orthonormal basis of U. You should compute that the GramSchmidt yields an orthonormal basis

$$
e_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0\right), e_{2}=\left(0,0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) .
$$

Then you can compute that

$$
P_{U} v=\left(\frac{3}{2}, \frac{3}{2}, \frac{11}{5}, \frac{22}{5}\right) .
$$

Exercise (7.A.2). Suppose $T \in \mathcal{L}(V)$. Prove that $\lambda \in \mathbb{F}$ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^{*}.

Solution. It is equivalent to show that: $\lambda \in \mathbb{F}$ is not an eigenvalue of T if and only if $\bar{\lambda}$ is not an eigenvalue of T^{*}. Then:
λ is not an eigenvalue of T
$\Longleftrightarrow T-\lambda I$ is invertible
(Why?)
$\Longleftrightarrow S(T-\lambda I)=I$ for some $S \in \mathcal{L}(V)$
(Why? Note S is an inverse)
$\Longleftrightarrow\left(T^{*}-\bar{\lambda} I\right) S^{*}=I$
(Why?)
$\Longleftrightarrow T^{*}-\bar{I}$ is invertible
$\Longleftrightarrow \bar{\lambda}$ is not an eigenvalue of T^{*}

