Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 9/Week 10

Topics: Multivariable functions. Limits and continuity.

- 1. Find and sketch the domains of each function.
 - (a) $f(x,y) = \ln(x+y+1)$
 - (b) $g(x,y) = \sqrt{4 x^2 y^2} + \sqrt{1 x^2}$
- 2. The temperature-humidity index (humidex) I is the perceived air temperature when the actual temperature is T and the relative humidity is h. That is, I(T, h) is a function of two variables. Consider the following table of values of I for varying T and h.¹ Note that the humidity is measured as a percentage, and the temperatures are in Fahrenheit.

$T \setminus h$	20	30	40	50	60	70
80	77	78	79	81	82	83
85	82	84	86	88	90	93
90	87	90	93	96	100	106
95	93	96	101	107	114	124
100	99	104	110	120	132	144

- (a) What is the value of I(95, 70). What does it represent?
- (b) For what value of T is I(T, 50) = 96?
- (c) What is the meaning of the function I(100, h)? Express your answer in terms of the trace.
- 3. Find the limits, if they exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+2y^2)}{3x^2+y^2}$$
 (b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4+y^4}$$

4. Find the limits, if they exists.

¹Source: National Oceanic & Atmospheric Administration (NOAA).

(a)
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{e^{-x^2 - y^2} - 1}{x^2 + y^2}$

5. Let $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$. We will show that $f(x,y) \to 0$ as (x,y) approaches the origin.

(a) Show that

$$|x^3| \le |x|(x^2 + y^2)$$
 and $|y^3| \le |y|(x^2 + y^2)$

- (b) Using part (a) and some other properties of the absolute value, show that $|f(x,y)| \le |x| + |y|$.
- (c) Use part (b) and the Squeeze Theorem to show that $\lim_{(x,y)\to(0,0)} f(x,y) = 0.$