Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 9/Week 10

Topics: Multivariable functions. Limits and continuity.

1. Find and sketch the domains of each function.
(a) $f(x, y)=\ln (x+y+1)$
(b) $g(x, y)=\sqrt{4-x^{2}-y^{2}}+\sqrt{1-x^{2}}$
2. The temperature-humidity index (humidex) I is the perceived air temperature when the actual temperature is T and the relative humidity is h. That is, $I(T, h)$ is a function of two variables. Consider the following table of values of I for varying T and $h .{ }^{1}$ Note that the humidity is measured as a percentage, and the temperatures are in Fahrenheit.

$T \backslash h$	20	30	40	50	60	70
80	77	78	79	81	82	83
85	82	84	86	88	90	93
90	87	90	93	96	100	106
95	93	96	101	107	114	124
100	99	104	110	120	132	144

(a) What is the value of $I(95,70)$. What does it represent?
(b) For what value of T is $I(T, 50)=96$?
(c) What is the meaning of the function $I(100, h)$? Express your answer in terms of the trace.
3. Find the limits, if they exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+2 y^{2}\right)}{3 x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+y^{4}}$
4. Find the limits, if they exists.

[^0](a) $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-x^{2}-y^{2}}-1}{x^{2}+y^{2}}$
5. Let $f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y^{2}}$. We will show that $f(x, y) \rightarrow 0$ as (x, y) approaches the origin.
(a) Show that
$$
\left|x^{3}\right| \leq|x|\left(x^{2}+y^{2}\right) \quad \text { and } \quad\left|y^{3}\right| \leq|y|\left(x^{2}+y^{2}\right)
$$
(b) Using part (a) and some other properties of the absolute value, show that $|f(x, y)| \leq$ $|x|+|y|$.
(c) Use part (b) and the Squeeze Theorem to show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.

[^0]: ${ }^{1}$ Source: National Oceanic \& Atmospheric Administration (NOAA).

