Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 7/Week 8

Topics: Vectors in the plane. 3D surfaces, vectors, curves. Dot product and angle.

1. True or false? Briefly justify your answers. Let \mathbf{u} and \mathbf{v} be any two vectors in \mathbb{R}^{2}.
(a) If $\mathbf{u} \cdot \mathbf{v}=0$, then $\mathbf{u}=0$ or $\mathbf{v}=0$.
(b) $|\mathbf{u} \cdot \mathbf{v}|=|\mathbf{u}||\mathbf{v}|$.
(c) If k is a scalar (any real number), then $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}$.
2. If the vectors in the figure satisfy $|\mathbf{u}|+|\mathbf{v}|=1$ and $\mathbf{u}+\mathbf{v}+\mathbf{w}=\mathbf{0}$, what is $|\mathbf{w}|$?

3. (a) Find an equation of the sphere that passes through the point $(6,-2,3)$ and has center $(-1,2,4)$.
(b) Find an equation of the cylinder which passes through the point $(6,-2,3)$ and has center $(-1,2,4)$ and whose central axis is the vertical axis.
(c) Find the center and radius of the following sphere.

$$
x^{2}+y^{2}+z^{2}-8 x+2 y+6 z+1=0
$$

4. Suppose \mathbf{u} is a unit vector as pictured to the right.
(a) Find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$.
(b) Calculate $\mathbf{u}+\mathbf{v}+\mathbf{w}$. Argue geometrically about the value of $\mathbf{u} \cdot(\mathbf{u}+\mathbf{v}+\mathbf{w})$.
(c) Now compute $\mathbf{u} \cdot(\mathbf{u}+\mathbf{v}+\mathbf{w})$. Does your
 geometric argument line up with your computation?
5. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ be nonzero vectors. Show that $\mathbf{v}-\mathbf{u}_{\| \mathbf{v}}$ is orthogonal to \mathbf{u}. [Hint: dot product.]
