Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 6/Week 7

Topics: Parametric equations, arc length, speed, polar coordinates.

1. True or false? Briefly justify your answer.
(a) If the parametric equation $c(t)=(f(t), g(t))$ satisfies $g^{\prime}(1)=0$, then it has a horizontal tangent when $t=1$.
(b) The parametric curves $c_{1}(t)=\left(t^{2}, t^{4}\right)$ and $c_{2}(t)=\left(t^{3}, t^{6}\right)$ have the same graph.
2. Find the cartesian equation of the parametrized curve $c(t)=\left(e^{t}, t^{2}\right)$.
3. Denote by \mathcal{C} the curve $x^{2}+y^{2}=1$ where we restrict to $x \geq 0$. That is, \mathcal{C} is the right-half of the unit circle.
(a) Find a parametrization $c(t)$ of \mathcal{C} where $t \in[-1,1]$ and travels counterclockwise. That is, find a parametrization $c(t)$ with endpoints $c(-1)=(0,-1)$ and $c(1)=(0,1)$.
(b) Calculate the speed function of $c(t)$.
(c) Compute the arclength function for $c(t)$.
[Hints: For the first part, don't use polar coordinates. For the arclength, remember that $\left.\frac{d}{d x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}}.\right]$
4. Match each polar coordinates equation with its corresponding cartesian representation.
(a) $r=2$,
(i) $x+y=4$,
(b) $r=2 \sin \theta$,
(ii) $x^{2}+y^{2}=4$,
(c) $r^{2}\left(1-2 \sin ^{2} \theta\right)=4$,
(iii) $x^{2}-y^{2}=4$,
(d) $r(\cos \theta+\sin \theta)=4$,
(iv) $x^{2}+(y-1)^{2}=1$.
5. Bonus. Viviani's Curve is a curve in \mathbb{R}^{3} which is given by the intersection of the unit sphere centered at $\left(-\frac{1}{2}, 0,0\right)$ and the circular cylinder of radius $\frac{1}{2}$ centered about the z-axis. Show that Viviani's Curve is parametrized by $c(t)=\left(\cos ^{2} t-\frac{1}{2}, \sin t \cos t, \sin t\right)$.
[Hints: the equation of this cylinder is $x^{2}+y^{2}=1 / 4$ and the equation of this sphere is $(x+1 / 2)^{2}+y^{2}+z^{2}=1$. A point is on the curve if it satisfies both of these equations. Start with the z coordinate: notice that $-1 \leq z \leq 1$ if it is on the curve so choose $z=\sin t$. Then derive the x coordinate, then the y coordinate.]
