Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 3/Week 4

Topics: Sequences, series, and convergence. Monotone Sequence Theorem. Alternating Series Test. Theorem 1 in Section 10.4

1. True or false?
(a) If the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent, then the sequence $\left\{a_{n}+b_{n}\right\}$ is divergent.
(b) If $\sum c_{n} 6^{n}$ is convergent, then $\sum c_{n}(-6)^{n}$ is convergent.
(c) If $\lim _{n \rightarrow \infty} a_{n}=2$, then $\lim _{n \rightarrow \infty}\left(a_{n+3}-a_{n}\right)=0$.
(d) If $\sum a_{n}$ is divergent, then $\sum\left|a_{n}\right|$ is divergent.
2. Which of the following sequences converge? Explain. For those that do, find the limit.
(a) $a_{n}=\arctan \left(\sqrt{n^{5}+n^{4}+n^{3}+n^{2}+n}\right)$
(b) $b_{n}=\ln \left(1+\frac{1}{n}\right)$
3. Which of the following series converge? Explain.
(a) $\sum_{n=1}^{\infty} \frac{6 \cdot 2^{2 n-1}}{3^{n}}$
(b) $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)$
[Hint for (b). Is the series telescoping?]
4. Consider the series $\sum\left(a_{n}+b_{n}\right)$. Do there exist a_{n} and b_{n} such that

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right) \neq \sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}
$$

i.e., we cannot split over the sum? If so, give an example of a_{n} and b_{n} and explain why this doesn't contradict Theorem 1 in section 10.2. If no such a_{n} and b_{n} exist, why not?
5. Find the values of x for which the series converges. For these values of x, find the sum.

$$
\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n}}
$$

