Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 2/Week 3

Topics: Differential equations. Logistic equation. First-order linear differential equations.
Note: Solutions to this problem set will be posted on Avenue. See Content \rightarrow Tutorials \rightarrow Problems with Solutions at the end of the week.

1. True or false?
(a) The differential equation is $e^{x} y^{\prime}=y$ is linear.
(b) The differential equation $y^{\prime}+x y=e^{y}$ is linear.
2. Which method would you use to solve each of the following differential equations?
(a) $y^{\prime}=x e^{-\sin x}-y \cos x$
(b) $\frac{d x}{d t}=1-t+x-t x$
(c) $2 y e^{y^{2}} y^{\prime}=2 x+3 \sqrt{x}$
(d) $x^{2} y^{\prime}-y=2 x^{3} e^{-1 / x}$
3. A remote island is measured to have an initial dragon population of 200. A year later the population is 350 .
(a) Let $P(t)$ be the dragon population at time t, where t is in years. Assuming the island has a carrying capacity of 500 dragons, use the logistic equation to model the dragon population and solve for P.
(b) Sketch a graph of your model from part (a).
(c) How quickly is the dragon population increasing when the population is 300 ?
4. A stream feeds into a lake at a rate of $1000 \mathrm{~L} /$ day. The stream is polluted with a toxin whose concentration is $20 \mathrm{~g} / \mathrm{L}$. Assume that the lake has volume $10^{6} \mathrm{~L}$ and that water flows out of the lake at the same rate of $1000 \mathrm{~L} /$ day.
(a) Find the equation $s(t)$ for the amount of toxin in the lake, assuming $s(0)=0$.
(b) Find the equation $c(t)$ for the concentration of toxin in the lake, assuming $c(0)=0$.
5. Bonus (time permitting). A Bernoulli differential equation is of the form

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

Observe that if $n=0$ or $n=1$ then the equation is linear.
(a) Show that for other values of n, the substitution $u=y^{1-n}$ transforms the Bernoulli equation into the linear equation

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) Q(x)
$$

(b) Solve the differential equation

$$
x y^{\prime}+y=-x y^{2} .
$$

