Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 1/Week 2

Topics: Properties and solutions of differential equations. Separable equations. Slope fields.

1. True or false?
(a) All solutions of the differential equation $y^{\prime}=-1-y^{4}$ are decreasing functions.
(b) The equation $y^{\prime}=3 y-2 x+6 x y-1$ is separable.
2. Explain why the following graphs cannot be solutions of the differential equation

$$
\frac{d y}{d t}=e^{t}(y-1)^{2} .
$$

3. (a) What can you say about the graph of a solution of the equation $y^{\prime}=x y^{3}$ when x is close to 0 ? What if x is large?
(b) Verify that all members of the family $y=\left(c-x^{2}\right)^{-1 / 2}$ are solutions of the differential equation $y^{\prime}=x y^{3}$.
(c) Solve the initial value problem $y^{\prime}=x y^{3}$ when $y(0)=2$.
4. (a) Match the differential equations to their direction field below.

Differential Equation	Direction Field
$y^{\prime}=2 \sin x$	
$y^{\prime}=x-y$	
$y^{\prime}=y^{2}-x^{2}$	
$y^{\prime}=1-x+y-x y$	

Direction field (iii)

Direction field (ii)

Direction field (iv)

(b) Find a solution for the differential equation corresponding to the direction field (i) with initial value $y(0)=0$.
5. If y is the solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=2 y\left(1-\frac{y}{5}\right), \\
y(0)=1,
\end{array}\right.
$$

find $\lim _{t \rightarrow \infty} y$. What happens to the limit as we vary the initial value?

