Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 11/Week 12

Topics: Gradient. Directional derivatives.

Note: Solutions to these problems will be posted at the end of the week.

- 1. True or false? Justify your answer. If $f(x, y) = \sin x + \sin y$, then $-\sqrt{2} \le D_{\mathbf{u}}f(x, y) \le \sqrt{2}$ for any unit vector \mathbf{u} .
- 2. You are standing at the point (x, y, z) = (0, 3, 9) on a mountain whose elevation at (x, y) is given by

$$h(x,y) = \frac{y^2}{x^2 + 1},$$

where the positive x-axis points east, and the positive y-axis points north. In which direction (e.g., west, northeast, etc.) could you walk in order to initially maintain your current elevation?

- 3. Find all points at which the direction of fastest change of the function $f(x, y) = x^2 + y^2 2x 4y$ is $\hat{i} + \hat{j}$.
- 4. Find the directions in which the directional derivative of $f(x, y) = x^2 + xy^3$ at the point (2, 1) has the value 2.
- 5. The second directional derivative of f(x, y) is

$$D_{\mathbf{u}}^2 f(x, y) = D_{\mathbf{u}} \left[D_{\mathbf{u}} f(x, y) \right].$$

If $\mathbf{u} = \langle a, b \rangle$ is a unit vector and f has continuous second partial derivatives, show that

$$D_{\mathbf{u}}^2 f = a^2 f_{xx} + 2abf_{xy} + b^2 f_{yy}.$$