Math 1XX3 Tutorial Problems

for T04, T07 with Mike
Tutorial 10/Week 11

Topics: Partial derivatives. Differentiability.

1. (a) What is the mistake in the following computation? $\frac{\partial}{\partial x}\left(x^{2} y^{2}\right)=x^{2}(2 y)+y^{2}(2 x)$
(b) Which of the following partial derivatives should be evaluated without the quotient rule? Calculate the partial derivative.
i. $\frac{\partial}{\partial x} \frac{x y}{y^{2}+1}$
ii. $\frac{\partial}{\partial y} \frac{x y}{y^{2}+1}$
iii. $\frac{\partial}{\partial x} \frac{y^{2}}{y^{2}+1}$
2. Find $f(x, y)$ such that

$$
\left\{\begin{array}{l}
f_{x}=\sin y+\frac{1}{1-x y} \\
f(1, y)=\sin y
\end{array}\right.
$$

3. Find $\frac{\partial z}{\partial x}$ for the surface $e^{z}=x y z$. [Hint: implicit differentiation]
4. (a) Use Clairaut's Theorem to show that if the third-order derivatives of $f(x, y)$ are continuous, then

$$
f_{x y y}=f_{y x y}=f_{y y x}
$$

(b) Assuming that the assumptions of Clairaut's Theorem hold, which of the following partial derivatives are equal to $f_{x x y}$?
i. $f_{x y x}$
ii. $f_{y y x}$
iii. $f_{x y y}$
iv. $f_{y x x}$
5. Prove that there does not exist any function $f(x, y)$ such that $f_{x}=x y$ and $f_{y}=x^{2}$.

