Math 1XX3 Tutorial Problems

for T04, T07 with Mike

Tutorial 10/Week 11

Topics: Partial derivatives. Differentiability.

- 1. (a) What is the mistake in the following computation? $\frac{\partial}{\partial x}(x^2y^2) = x^2(2y) + y^2(2x)$
 - (b) Which of the following partial derivatives should be evaluated *without* the quotient rule? Calculate the partial derivative.

i.
$$\frac{\partial}{\partial x} \frac{xy}{y^2 + 1}$$
 ii. $\frac{\partial}{\partial y} \frac{xy}{y^2 + 1}$ iii. $\frac{\partial}{\partial x} \frac{y^2}{y^2 + 1}$

2. Find f(x, y) such that

$$\begin{cases} f_x = \sin y + \frac{1}{1 - xy} \\ f(1, y) = \sin y \end{cases}$$

- 3. Find $\frac{\partial z}{\partial x}$ for the surface $e^z = xyz$. [Hint: implicit differentiation]
- 4. (a) Use Clairaut's Theorem to show that if the third-order derivatives of f(x, y) are continuous, then

$$f_{xyy} = f_{yxy} = f_{yyx}.$$

- (b) Assuming that the assumptions of Clairaut's Theorem hold, which of the following partial derivatives are equal to f_{xxy} ?
 - i. f_{xyx} ii. f_{yyx} iii. f_{xyy} iv. f_{yxx}
- 5. Prove that there does not exist any function f(x, y) such that $f_x = xy$ and $f_y = x^2$.