Additional Practice Problems for Test 2

This is a collection of problems which I prepared for tutorial. Some, but not all, were presented in tutorial. Use this to study at your own discretion, **I do not know** whether they will be similar to the difficulty of the midterm.

- 1. True or false?
 - (a) If f is differentiable then $\frac{d}{dx}\sqrt{f(x)} = f'(x)/(2\sqrt{f(x)})$ and $\frac{d}{dx}f(\sqrt{x}) = f'(x)/(2\sqrt{x})$.
 - (b) The function |x| has a critical point at x = 0.
 - (c) The extreme values of f on [a, b] are the same as the extrema of f on (a, b).
 - (d) If f has an absolute minimum on [a, b] at c, then f'(c) = 0.
 - (e) If f is continuous and differentiable on (a, b), then f attains an absolute maximum and minimum on (a, b).
 - (f) If f has a local minimum at x = c, then $f''(c) \ge 0$.
 - (g) If f has a critical point at x = c, then c is not an inflection point of f.
 - (h) There exists a differentiable function f such that f(1) = 0, f(3) = 2, and f'(x) > 1 for all x. [Hint: can you use the Mean Value Theorem?]
 - (i) If f satisfies the assumptions of Rolle's Theorem, then f also satisfies the assumptions of the Mean Value Theorem.
 - (j) If f satisfies the assumptions of the Mean Value Theorem, then f also satisfies the assumptions of Rolle's Theorem.
- **2.** Compute F'(0) for $F(x) = \frac{x^9 + x^8 + 4x^5 7x}{x^4 3x^2 + 2x + 1}$. [Hint: you can avoid computing the derivative. Write F(x) = f(x)/g(x), so $F'(x) = (f'g fg')/g^2$, and plug in x right away.]
- **3.** What is the 30th derivative of $(2x^6 + x^4)^5$?
- 4. What is the 50th derivative of $\cos(2x)$?
- **5.** What is the derivative of |x|? [Hint: write $|x| = \sqrt{x^2}$ and use the chain rule. Why can we write $|x| = \sqrt{x^2}$?]
- 6. Suppose that f, g, and h are differentiable functions. Compute the derivative of

$$(f(x^2))^{10} \frac{e^{g(|\sin x|)}}{h(\ln x)}$$

- 7. At what point(s) on the curve $y = \sqrt{1+2x}$ is the tangent line to y perpendicular to the line 6x + 2y = 1? [Recall that lines are perpendicular if their slopes are negative reciprocals at the point of intersection.]
- 8. Suppose that f and g are differentiable functions such that f(g(x)) = x and $f'(x) = 1 + (f(x))^2$. What is g'(x)?
- **9.** Compute dx/dy, the derivative of x with respect to y, for the curve $y \sec x = x \tan y$.

- 10. Let P be a point on the circle $x^2 + y^2 = r^2$. Show that the tangent line to the circle at P is perpendicular to the radius from the origin to P. [Recall that lines are perpendicular if their slopes are negative reciprocals at the point of intersection.]
- 11. Use the definition of the derivative to compute f'(0) for the function

$$f(x) = \begin{cases} x^2 \arctan(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- **12.** Find the critical points of $f(x) = |x^3 + x^2 16x 16|$.
- **13.** Find the domain and the derivative of $f(x) = \ln(\ln(\ln(g(x))))$.
- 14. Differentiate $y = \frac{x^{3/4}\sqrt{x^2+1}}{(3x+4)^5}$. [Hint: can you avoid the quotient rule?]
- 15. For which of the following functions does Rolle's Theorem guarantee the existence of a point with slope 0 on the given interval? If not, what about a smaller interval?

(a)
$$x^{1002} - x^{1000} + x^2 - 1$$
 on $[-1, 1]$
(b) $|x|$ on $[-1, 1]$
(c) $\frac{x(x-1)(x-2)}{x-1}$ on $[0, 2]$
(d) $x(x-8)$ on $[0, 10]$

- 16. Sketch a continuous graph with roots at -2 and 1 and critical points at -1 and 3. Is it unique?
- 17. Find all local maxima and minimum of $f(x) = x 2\sin x$ on the interval $[0, 2\pi]$.
- 18. Show that $f(x) = x^3 2x^2 + 2x$ is an increasing function.
- **19.** Sketch the curve $f(X) = 5x^3 3x^5$. This includes:
 - find the intervals of increase and decrease,
 - find the local and global extrema
 - find the intervals of concavity.
- **20.** Sketch the graph of a function defined on [0, 8] with f(0) = f(8) = 0 that does not satisfy the conclusion of Rolle's Theorem on [0, 8].
- **21.** Let f(x) = 2 |2x 1|. Show that there is no value of $c \in (0,3)$ such that f(3) f(0) = f'(c)(3-0). Why does this not contradict the Mean Value Theorem?
- **22.** Assume that f is twice differentiable, positive, and concave up. Show that $g(x) = (f(x))^2$ is also positive and concave up. What's an example of such a function f?

Challenge questions

- C1. (a) Show that the derivative of an even function is odd.
 - (b) Show that the derivative of an odd function is even.

C2. Show that
$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

C3. Suppose that f is continuous on [a, b], differentiable on (a, b), and has a local minimum at $c \in (a, b)$. Show that f'(c) = 0.