Additional Practice Problems for Test 2

This is a collection of problems which I prepared for tutorial. Some, but not all, were presented in tutorial. Use this to study at your own discretion, I do not know whether they will be similar to the difficulty of the midterm.

1. True or false?
(a) If f is differentiable then $\frac{d}{d x} \sqrt{f(x)}=f^{\prime}(x) /(2 \sqrt{f(x)})$ and $\frac{d}{d x} f(\sqrt{x})=f^{\prime}(x) /(2 \sqrt{x})$.
(b) The function $|x|$ has a critical point at $x=0$.
(c) The extreme values of f on $[a, b]$ are the same as the extrema of f on (a, b).
(d) If f has an absolute minimum on $[a, b]$ at c, then $f^{\prime}(c)=0$.
(e) If f is continuous and differentiable on (a, b), then f attains an absolute maximum and minimum on (a, b).
(f) If f has a local minimum at $x=c$, then $f^{\prime \prime}(c) \geq 0$.
(g) If f has a critical point at $x=c$, then c is not an inflection point of f.
(h) There exists a differentiable function f such that $f(1)=0, f(3)=2$, and $f^{\prime}(x)>1$ for all x. [Hint: can you use the Mean Value Theorem?]
(i) If f satisfies the assumptions of Rolle's Theorem, then f also satisfies the assumptions of the Mean Value Theorem.
(j) If f satisfies the assumptions of the Mean Value Theorem, then f also satisfies the assumptions of Rolle's Theorem.
2. Compute $F^{\prime}(0)$ for $F(x)=\frac{x^{9}+x^{8}+4 x^{5}-7 x}{x^{4}-3 x^{2}+2 x+1}$. [Hint: you can avoid computing the derivative. Write $F(x)=f(x) / g(x)$, so $F^{\prime}(x)=\left(f^{\prime} g-f g^{\prime}\right) / g^{2}$, and plug in x right away.]
3. What is the $30^{\text {th }}$ derivative of $\left(2 x^{6}+x^{4}\right)^{5}$?
4. What is the $50^{\text {th }}$ derivative of $\cos (2 x)$?
5. What is the derivative of $|x|$? [Hint: write $|x|=\sqrt{x^{2}}$ and use the chain rule. Why can we write $|x|=\sqrt{x^{2}}$?]
6. Suppose that f, g, and h are differentiable functions. Compute the derivative of

$$
\left(f\left(x^{2}\right)\right)^{10} \frac{e^{g(|\sin x|)}}{h(\ln x)}
$$

7. At what point(s) on the curve $y=\sqrt{1+2 x}$ is the tangent line to y perpendicular to the line $6 x+2 y=1$? [Recall that lines are perpendicular if their slopes are negative reciprocals at the point of intersection.]
8. Suppose that f and g are differentiable functions such that $f(g(x))=x$ and $f^{\prime}(x)=1+(f(x))^{2}$. What is $g^{\prime}(x)$?
9. Compute $d x / d y$, the derivative of x with respect to y, for the curve $y \sec x=x \tan y$.
10. Let P be a point on the circle $x^{2}+y^{2}=r^{2}$. Show that the tangent line to the circle at P is perpendicular to the radius from the origin to P. [Recall that lines are perpendicular if their slopes are negative reciprocals at the point of intersection.]
11. Use the definition of the derivative to compute $f^{\prime}(0)$ for the function

$$
f(x)= \begin{cases}x^{2} \arctan (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

12. Find the critical points of $f(x)=\left|x^{3}+x^{2}-16 x-16\right|$.
13. Find the domain and the derivative of $f(x)=\ln (\ln (\ln (g(x))))$.
14. Differentiate $y=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+4)^{5}}$. [Hint: can you avoid the quotient rule?]
15. For which of the following functions does Rolle's Theorem guarantee the existence of a point with slope 0 on the given interval? If not, what about a smaller interval?
(a) $x^{1002}-x^{1000}+x^{2}-1$ on $[-1,1]$
(b) $|x|$ on $[-1,1]$
(c) $\frac{x(x-1)(x-2)}{x-1}$ on $[0,2]$
(d) $x(x-8)$ on $[0,10]$
16. Sketch a continuous graph with roots at -2 and 1 and critical points at -1 and 3 . Is it unique?
17. Find all local maxima and minimum of $f(x)=x-2 \sin x$ on the interval $[0,2 \pi]$.
18. Show that $f(x)=x^{3}-2 x^{2}+2 x$ is an increasing function.
19. Sketch the curve $f(X)=5 x^{3}-3 x^{5}$. This includes:

- find the intervals of increase and decrease,
- find the local and global extrema
- find the intervals of concavity.

20. Sketch the graph of a function defined on $[0,8]$ with $f(0)=f(8)=0$ that does not satisfy the conclusion of Rolle's Theorem on $[0,8]$.
21. Let $f(x)=2-|2 x-1|$. Show that there is no value of $c \in(0,3)$ such that $f(3)-f(0)=$ $f^{\prime}(c)(3-0)$. Why does this not contradict the Mean Value Theorem?
22. Assume that f is twice differentiable, positive, and concave up. Show that $g(x)=(f(x))^{2}$ is also positive and concave up. What's an example of such a function f ?

Challenge questions

C1. (a) Show that the derivative of an even function is odd.
(b) Show that the derivative of an odd function is even.

C2. Show that $\frac{d}{d x}\left(f^{-1}(x)\right)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right.}$.
C3. Suppose that f is continuous on $[a, b]$, differentiable on (a, b), and has a local minimum at $c \in(a, b)$. Show that $f^{\prime}(c)=0$.

