
Assignment 2 Solutions, Math 712

1. Consider the class Gnt of all finite triangle-free graphs (nt for no tri-
angles). Show that this is a Fräıssé class i.e. it is closed under iso-
morphisms, subgraphs, amalgamation, and for every n, there are, up
to isomorphism, only finitely many triangle-free graphs of size n. Con-
struct a generic countable graph Hnt as we did with the random graph
with the property that it is universal for the class Gnt and is ultra-
homogeneous. Show that there is only one countable graph with this
property. Write out axioms for this class and conclude that these ax-
ioms are complete.

Solution: To see that Gnt is a Fräıssé class, we really only have to
check that it is closed under amalgamation. So suppose that G is a
common subgraph of two triangle-free graphs H1 and H2. We can form
an amalgamation of H1 and H2 over G which is triangle-free by, for
instance, considering the disjoint union of H1 and H2 with the common
G identified and then adding no new edges between vertices in H1 \G
and H2 \G. Since there were no triangles to begin with and we added
no new edges, the resulting graph will be triangle-free.

We can now construct Hnt as an increasing chain of finite triangle-free
graphs

H0 ⊂ H1 ⊂ H2 ⊂ ...

where at each stage in the construction we consider all the subgraphs G
of Hi and all H which are one point triangle-free extensions of G. We
promise for each such pair to consider an amalgamation that involves
that pair at some future stage. Besides the standard bookkeeping, we
are left, at stage i with Hi and some subgraph G ⊂ Hi together with H,
a one-point triangle-free extension of G. Let Hi+1 be an amalgamation
of Hi with H over G.

Since the one point graph is triangle-free, it suffices to show that Hnt

is ultrahomogeneous. That is, suppose that A,B ⊂ Hnt are finite and
isomorphic via some map f . We want to do a back and forth argument
which shows that there is an automorphism of Hnt which extends f .
We look at the forth argument; the back argument is similar. A ⊂ Hn

for some n. Pick a ∈ Hnt which we wish to add to the domain of
f . This represents a one point extension that we had to consider at
some point in the construction of Hnt. B ⊂ Hm for some m and hence



we also had to consider the amalgamation problem involving B and a
one point extension which is isomorphic to the pair A together with
a. Hence, by construction of Hnt there is some b ∈ Hnt such that
f ∪ {(a, b)} is an isomorphism. Continuing like this inductively, we
create an automorphism of Hnt which extends f .

Do some literature research and find out what you can about the almost
sure theory of triangle-free graphs. Is it the same as the theory of Hnt?
Is the theory of Hnt pseudo-finite? Hint: some of this is an open
research question.

Comments: There is an almost sure theory of triangle-free graphs
which is essentially the random bipartite graph. This is a result of
Erdös, Kleitman and Rothschild. It is not the same as the theory of
Hnt because, for instance, a 5-cycle is a subgraph of Hnt and it is not
bipartite.

As far as I know the question of whether the generic triangle-free graph
is pseudo-finite is wide open.

2. Prove the  Loś Theorem for metric spaces. That is, show that if X =∏
U Xi where the Xi’s are an I-indexed family of uniformly bounded

metric spaces then whenever ϕ(x1, . . . , xn) is a formula in the language
of metric spaces and a1, . . . , an ∈ X then

ϕX(a1, . . . , an) = lim
U
ϕXi(a1i , . . . , a

n
i ).

Solution: We prove this by induction on the construction of the for-
mula ϕ.

Case 1: The only atomic formula here is d(x, y) where d is the metric
symbol and so the result follows by the definition of the the metric on
the ultraproduct. Note that the language provides a uniform bound on
the value of d in any model.

Case 2: Suppose we have a continuous function f : Rn → R and
formulas ϕk(x̄) for k = 1, . . . , n. We need to assume that each ϕk has
some bound Bk and hence f restricted to

∏
k[−Bk, Bk] is also bounded

since f is continuous.

The essence of the rest of the proof is that

f(lim
U
ϕX
1 (ā), . . . , lim

U
ϕX
n (ā) = lim

U
f(ϕXi

1 (āi), . . . , ϕ
Xi
n (āi))



which follows from the continuity of f .

Case 3: Finally, assume that ϕ(x̄) = infy ψ(x̄, y). The bound on this
formula will be the same as for ψ.

Now suppose ϕX(ā) = r and ε > 0. Then for some b ∈ X, ψX(ā, b) <
r + ε. By induction then, ultrafilter often we have ψXi(āi, bi) which
means that limU ψ

Xi(āi, bi) ≤ r + ε. From this we conclude that
limU ϕ

Xi(āi) ≤ ϕX(ā).

Now if limU ϕ
Xi(āi) = s < r, ultrafilter often we could choose bi ∈

Xi such that ψ(āi, bi) < s + ε where ε = r−s
2

. But then if we let
b = (bi), we have limU ψ

Xi(āi, bi) ≤ s + ε < r which contradicts that
r = infy ψ

X(ā, y).

3. Suppose that (Xi, di) for i ∈ I is a uniformly bounded I-indexed family
of metric spaces and fi is a continuous function of one variable on Xi

for each i (continuous with respect to di). Algebraically we can define
X ′ =

∏
I Xi and define f coordinate-wise on X ′ via the fi’s. If U is an

ultrafilter on I, then X =
∏
U Xi is a quotient of X ′. What condition

do we need to put on the fi’s so that f is well-defined on this quotient?

Solution: As I think I hinted at in class, assuming that the fi’s
are uniformly uniformly continuous is enough. Suppose that for ev-
ery ε > 0 there is δ > 0 such that for any i, whenever di(xi, yi) < δ
for xi, yi ∈ Xi then d(f(xi), f(yi)) ≤ ε. Now suppose that x̄, ȳ ∈ ∏I Xi

and limU di(xi, yi) = 0. Choose ε > 0 and let δ be given by the
uniform continuity. Then ultrafilter often di(xi, yi) < δ and hence
di(f(xi, f(yi)) ≤ ε. So limU di(f(xi), f(yi)) ≤ ε. Since this is true for
any ε, f is well-defined on the equivalence class of x modulo the metric
on the ultraproduct.

4. Show that the Urysohn sphere, U , is ultrahomogeneous. That is, sup-
pose that X ⊂ Y are both finite [0, 1]-metric spaces and X ⊂ U . Then
there is a Y ′, X ⊂ Y ′ ⊂ U with Y ∼= Y ′ with X fixed.

Solution: I know that people found this to be a challenging problem
so I will write a solution in two passes - first to get the basic idea down
and then to come back and get the numbers right. We set the stage
with some notation: U is Urysohn space which is the closure of U0, a
countable dense subset in which all the distances are rational and U0

is both universal and ultrahomogeneous with respect to finite rational



[0, 1]-metric spaces. Since we have X ⊂ U then by the density of U0,
we can find a sequence of subspaces Xk ⊂ U0 such that Xk tends to X
in the limit and moreover, we can assume that ConfX(Xk) tends to 0
in the limit. That is,

(a) If X = {a1, . . . , an} then we can find Xk = {ak1, . . . , akn} ⊂ U0 such
that limk→∞ a

k
i = ai for every i = 1, . . . , n and moreover,

(b) limk→∞ d(aki , a
k
j ) = d(ai, aj) for all i, j = 1, . . . , n.

We also have Y which we can assume is a one-point extension of X.
We would like to choose Yk, a one-point extension of Xk so that Yk
is a rational [0, 1]-metric space and moreover, ConfY (Yk) tends to 0
as k tends to infinity. Precisely, we mean that if Y = {a1, . . . , an, y}
and Yk = {ak1, . . . , akn, yk} then limk→∞ d(aki , yk) = d(ai, y) for all i =
1, . . . , n. Note we already have the convergence requirements for Xk.
So how do we choose Yk with this property? First of all, we can amal-
gamate Y with Xk over X. We do this in the minimal way that we did
in class. That is, we let

d(y, aki ) = min
j

(
d(y, aj) + d(aj, a

k
i ))
)

for each i. This means that |d(y, aki ) − d(y, ai)| ≤ d(ai, a
k
i ) for all i;

this tells us that if X and Xk are close together then the configuration
involving y is close to correct. The only remaining problem is that
d(y, aki ) might not be rational. Again, as we did in class, we can modify
these distances. Note that all the distances in Xk are rational so we
only have to modify d(y, aki ). The conclusion from class was that we
can increase only these values by any sufficiently small amount that
makes them rational and still have a metric space.

Alright, so with all this preprocessing, how do we construct the nec-
essary extension of X inside U? We will produce it as the limit of a
Cauchy sequence (bk) which we create inductively as follows:

(a) b0 realizes the extension Y0 of X0 in U0. This is possible by the
manner in which U0 was constructed.

(b) In general we will have bk realizing Yk over Xk and bk ∈ U0. The
trick will be how to construct bk+1 so that it isn’t too far from bk.



Toward this end, we can assume that we have Xk and bk by induction
as well as Xk+1 and Yk+1. The idea is to amalgamate Yk+1 with Xk

and bk over Xk+1. Notice that by induction, all the distances between
Xk, Xk+1 and bk are known as these are elements of U0. We want to
construct a one point extension so that we realize the metric space
described by Yk+1. We do this in as minimal way as possible subject to
the triangle inequality. We define the distance from yk+1 to any point
z in Xk or bk by

d(z, y) = max
a
|d(z, a)− d(a, y)|

where a ranges over Xk+1. It is an exercise to show that this function
defines a metric on Xk, Xk+1, bk and y. As all the distances are rational,
this extension is realized in U0 by some bk+1. Let’s establish some
bounds. Suppose that d(bk, bk+1) = |d(bk, a

k+1
i ) − d(ak+1

i , bk+1)|. That
is, ak+1

i realizes the maximum in this case. There are two cases:

(a) Case 1: d(bk, a
k+1
i ) ≥ d(ak+1

i , bk+1). In this case, notice that
d(bk, a

k+1
i ) ≤ d(bk, a

k
i ) + d(aki , a

k+1
i ) which means that

d(bk, bk+1) ≤ d(ak, ak+1
i ) + d(bk, a

k
i )− d(bk+1, a

k+1
i ).

(b) Case 2: d(bk, a
k+1
i ) ≤ d(ak+1

i , bk+1). In this case, notice that
d(bk, a

k+1
i ) ≥ d(bk, a

k
i )− d(aki , a

k+1
i ). Once again, we have

d(bk, bk+1) ≤ d(ak+1
i , aki ) + d(bk, a

k
i )− d(bk+1, a

k+1
i ).

The takeaway from all this is that if Yk and Yk+1 are close to the
configuration of Y , and the Cauchy sequence aki is close to ai then
d(bk, bk+1) can’t be too big.

Now to get the numbers correct, we can choose a subsequence of the
(aki )’s so that d(aki , a

k+1
i ) < 1

2k
for all i and that ConfY (Yk) < 1

2k
. In this

way, d(bk, bk+1) is no larger than 3
2k

. This implies that (bk) is a Cauchy
sequence and if we let b ∈ U be its limit than we have X together with
b realizing the one-point extension Y .

5. I made the claim in class that there is no effective difference between
pseudo-compact and pseudo-finite in continuous logic. Let me try to
justify that claim. Suppose that X is a compact metric space. For each



n, choose a1, . . . , akn ∈ X such that the open 1
n
-balls centered at the

ai’s cover X; we can assume that the ai’s are at least 1
n

apart (Why?).
Let Xn be the subspace consisting of {ai : i ≤ kn}. Let U be any
non-principal ultrafilter on N and prove that X ∼=

∏
U Xn.

Solution: My original solution made use of the requirement that the
centers of the balls were 1

n
apart. In the end, I didn’t need this al-

though you can assume this by choosing a maximal set of balls with
this property -it must be a cover - and then taking a finite subcover.
Here is a solution that doesn’t use this property.

Let’s introduce some additional notation: for each n, let’s refer to the
given open cover as Cn and the centers as

{ani : i ≤ kn}.

Consider the map i : x 7→ (xn) where xn is a center of an open ball in
Cn containing x. This map is well-defined since if (xn) and (x′n) are
two such sequences then d(xn, x

′
n) < 2/n and so the two sequences are

identified in the ultraproduct. A similar argument shows this map is
injective.

To see that the map is surjective, pick any sequence x = (xn) ∈ ∏nXn.
We now create a descending chain Yk of elements of U such that:

(a) Y0 = N,

(b) if k > 0 then choose i least such that

Yk = {n ∈ Yk−1 : n > minYk−1 and d(xn, a
k
i ) <

1

n
} ∈ U .

Since Ck is a cover, such an i exists. Let’s call it ik. Notice that⋂
k Yk = ∅.

Now define a sequence yk = anin for n = minYk. This sequence is a
Cauchy sequence since yl ∈ Yk for all l > k and hence if l,m > k then
d(yl, ym) < 2

k
. Let y = lim yk ∈ X. Now a representation of i(y) where

the nth entry is yk if n is the least element of Yk. For all m ∈ Yk, we
d(xm, yk) < 1

k
and so d(x, i(y)) in the ultraproduct is 0 hence i is onto.


