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Introduction: why model theory?

Here is a concrete example: Suppose V is an algebraic
variety and f is an injective morphism from V to V .
Claim: f is surjective.
On the face of it, this doesn’t look like logic - it looks like
algebraic geometry. Let’s give a proof.
After unravelling the definitions, we can assume that V is
the zero set of some finite collection of polynomials over C.
Moreover, f is given by complex rational maps. This is to
say everything can be expressed in the language of fields.
Suppose we ask the same question over a finite field
instead of the complex numbers. Are injective maps
surjective? Yes, by the pigeonhole principle!
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Introduction cont’d

But this property ”injective implies surjective” also holds for
unions of finite fields in this context. So the property in
question holds for algebraically closed fields of finite
characteristic.
The limit of algebraically closed fields of arbitrarily large
finite characteristic is an algebraically closed field of
characteristic 0 - this is a use of either compactness or
ultraproducts - so the same property holds for some
algebraically closed field of characteristic 0.
Finally, the complex numbers are an algebraically closed
field of characteristic 0 and all such fields satisfy the same
properties expressible in the language of fields. So all
injective morphisms from a variety to itself are surjective.
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Introduction cont’d

What did we use here that was model theory?
We identified a property that was expressible in a
well-chosen language. Said another way, we found a
language suitable for the interesting property.
We were able to determine the properties that held in the
relevant models in this language - we knew what the
theory of algebraically closed fields looked like.
We were able to conclude facts about one model (the
complex numbers) by looking at other models. The
techniques involved here - unions of chains, some
combinatorial reasoning, compactness - are not difficult but
need to be used in the right context.
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Filters and Ultrafilters

Definition
If X is a set and F ⊆ P(X ) then F is said to be a filter if

∅ 6∈ F ,
if A,B ∈ F then A ∩ B ∈ F , and
if A ∈ F and A ⊆ B ⊆ X then B ∈ F .

Lemma
G ⊆ P(X ) is contained in a filter iff G has the finite intersection
property i.e. for every finite G0 ⊆ G,

⋂
G0 6= ∅.

Definition
An ultrafilter on X is a filter F such that for every A ⊆ X , either
A ∈ F or X \ A ∈ F .
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Filters and Ultrafilters, cont’d

Lemma
If F is a filter on X then F is an ultrafilter iff it is a maximal
filter.
Any filter on X can be extended to an ultrafilter.

Examples: Suppose that X is a set.
If a ∈ X then U = {A ∈ P(X ) : a ∈ A} is an ultrafilter;
ultrafilters of this kind are called principal.
If X is infinite, the set of cofinite subsets of X is a filter
called the Frechet filter on X ; it is contained in all
non-principal ultrafilters on X .
Let Y = Pfin(X ) be the set of finite subsets of X . For any
finite subset A of X , let OA = {B ∈ Y : A ⊆ B}. The set
F = {OA : A ∈ Y} has the finite intersection property and
is not contained in a principal ultrafilter.
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Ultralimits

Now suppose U is an ultrafilter on a set I and r̄ = 〈ri : i ∈ I〉 is
an I-indexed family of real numbers. We define the ultralimit of r̄
with respect to U as follows:

lim
i→U

ri = r iff for every ε > 0, {i ∈ I : |r − ri | < ε} ∈ U

Lemma
If r̄ is bounded then

lim
i→U

ri exists and is unique;

lim
i→U

ri = inf{B : {i ∈ I : ri ≤ B} ∈ U};

lim
i→U

ri = sup{B : {i ∈ I : ri ≥ B} ∈ U}
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Ultraproducts of metric spaces

Fix an index set I, an ultrafilter U and metric spaces (Xi ,di) for
i ∈ I with a uniform bound on the metrics i.e. there is some B
so that for all i and all x , y ∈ Xi , di(x , y) ≤ B. Define d on

∏
i∈I

Xi

as follows:
d(x̄ , ȳ) = lim

i→U
di(xi , yi)

Lemma

d is a pseudo-metric on
∏
i∈I

Xi .
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Ultraproducts of metric spaces, cont’d

Definition

The ultraproduct of the Xi ’s with respect to U,
∏
i∈I

Xi/U is the

metric space obtained by quotienting
∏
i∈I

Xi by d . If all the Xi ’s

are equal to a fixed X we will often write X U for this ultraproduct
and call it the ultrapower.
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Exercises

Show that for any I and ultrafilter U on I, [0,1]U ∼= [0,1].
More generally, show that for a compact metric space X ,
X U ∼= X .
Show that if each Xi is complete then

∏
i∈I

Xi/U is complete.

Show for any metric spaces Xn for n ∈ N,
∏
n∈N

Xn/U is

complete.
Show that this definition of ultraproduct is the same as the
discrete or set-theoretic ultraproduct i.e. suppose that Xi
has the discrete metric and compute the ultraproduct.

Bradd Hart Ultraproducts and Metric Structures



logo

Metric structures

We want to add more structure to a (bounded) metric
space; for now let’s consider a single additional function f .
So we will have a bounded metric space (X,d) and a
function f say of one variable. We do want that the
ultraproduct of these structures is still a structure of the
same kind. So how do we define f on the ultrapower of X?
f must be continuous!
f must be uniformly continuous!
There is nothing special about one variable; these
arguments apply to functions of many variables.
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Metric structures cont’d

What about relations? Imagine that we have a one-variable
relation R (taking values somewhere) on a metric space
and we want to make sense of it in the ultrapower.
Its range must be compact and R must be uniformly
continuous.
There is really no loss in assume that the range of R is
[0,1] or some other compact interval in the reals.
Again there is nothing special about one-variable; we can
have relations of many variables.
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The language of a metric structure

A language L will consist of
a set S called sorts;
F , a family of function symbols. For each f ∈ F we specify
the domain and range of f : dom(f ) =

∏n
i=1 si where

s1, . . . , sn ∈ S and rng(f ) = s where s ∈ S. Moreover, we
also specify a continuity modulus. That is, for each i we
are given δf

i : [0,1]→ [0,1]; and
R, a family of relation symbols. For each R ∈ R we are
given the domain dom(R) =

∏n
i=1 si where s1, . . . , sn ∈ S

and the rng(R) = KR for some closed interval KR.
Moreover, for each i , we specify a continuity modulus
δR

i : [0,1]→ [0,1].
For each s ∈ S, we have one special relation symbol ds
with domain s × s and range of the form [0,Bs]. It’s
continuity moduli are the identity functions.
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Definition of a metric structures

A metric structure M interprets a language L; it will consist of
an S-indexed family of complete bounded metric spaces
(Xs,ds) for s ∈ S;
a family of functions f M for every f ∈ F such that
dom(f M) =

∏n
i=1 Xsi for the sequence of sorts

corresponding to the domain of f and rng(f M) = Xs for the
sort corresponding to the range of f . f M is uniformly
continuous as specified by the uniform continuity moduli
associated to f ; and
a family of relations RM for every R ∈ R such that
dom(RM) =

∏n
i=1 Xsi for the sequence of sorts

corresponding to the domain of R and rng(RM) = KR for
the closed interval associate to R. RM is uniformly
continuous as specified by the uniform continuity moduli
associated to R.
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Examples of metric structures

Some simple examples:
Any complete bounded metric space (X ,d). This has the
empty family of functions and relations although we often
count the metric as a relation (why is it uniformly
continuous?)
Any ordinary first order structure M with some collection of
functions and relations. To see this as a metric structure,
we put the discrete metric on M to make it a bounded
metric space. All functions become uniformly continuous.
Relations which are usually thought of as subsets of Mn

become {0,1}-valued functions - again they are uniformly
continuous.
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Hilbert space

A Hilbert space H is a complete complex inner product
space; how can we see this as a metric structure?
Let Bn be the ball of radius n centered at the origin in H; Bn
is a bounded complete metric space with respect to the
metric induced from the inner product.
There are inclusion maps between Bn and Bm if n ≤ m.
0 is a constant (our functions can have arity 0!) in B1.
For complex numbers λ and for every n, there is a unary
function λn which is scalar multiplication by λ on Bn; this
function has range in Bm where m is the least integer
greater than or equal to n|λ|.
The operation of addition has to be similarly divided up: for
m,n ∈ N, there is an operation +m,n which takes Bm × Bn
to Bm+n.
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Hilbert space, cont’d

The inner product is complex valued which is an additional
issue. Besides dividing it up so that there is a relation
defined on each product Bm × Bn, we also have to
separate this relation into its real and complex parts.
So formally a Hilbert space can be thought of as a metric
structure by considering

The family of bounded metric structures Bn for all n ∈ N;
the family of functions 0, λn for λ ∈ C and n ∈ N and +m,n
for all m,n ∈ N; and
the family of relations re(〈−,−〉)m,n and im(〈−,−〉)m,n for
m,n ∈ N.
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A calculation

Suppose that (Xi ,di) are uniformly bounded metric spaces
for all i ∈ I, U is an ultrafilter on I and fi is an n-ary
uniformly continuous relation with a fixed uniform continuity
modulus for all i ∈ I and range in K , a compact interval.
Claim: Suppose that (Y ,d , f ) is the ultraproduct∏
i∈I

(Xi ,di , fi)/U and ā2, . . . , ān ∈ Y then

sup
x∈Y

f (x , ā2, . . . , ān) = lim
i→U

sup
x∈Xi

fi(x ,ai
2, . . . ,a

i
n)
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