Ehrenfeucht-Fraissé games revised

@ Fix p1(X), ..., ¢k(X) atomic formulas in the variables
X{,...,Xpand e >0

@ The EF-game of length n with respect to this data is played
as follows:

@ Player 1 chooses either a; € M or by € N respecting the
sort of xq; player 2 chooses by € N or a> € M respectively.

@ Player 1 and Player 2 alternate in this manner until they
have produced two sequences ay,...,a, € M and
b17...7bn€ N

@ Player 2 wins if for all i, |p;(2) — ¢;(b)| < e.

M = N iff Player 2 has a winning strateqgy for all EF-games.
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Diagrams

@ Suppose that M is a metric structure in a language L and
that A € M. The language L, is L together with a new
constant symbol for each a e A. M can be canonically
expanded to a structure in this language by letting a name
its constant.

@ The atomic diagram of M, Diags:(M), is the theory in the
language Ly, containing the conditions ¢(a) < r + 1/n for
all r e R, ne N and atomic formulas ¢ such that oV (a) < r.

@ The elementary diagram of M, Diage; (M), is the theory in
the language Ly, containing the conditions ¢(a) < r+1/n
forall r e R, ne N and any formulas ¢ such that ©"(a) < r.
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Diagrams and types

@ N = Diagat(M) iff M embeds into N.
@ N & Diage /(M) iff M elementarily embeds into N.

Type-space notation

Suppose M is a metric structure and A = M. Fix a tuple of sorts
S. Then Sé”(A) is the collection of all complete types in some
fixed tuple of variables from the sorts s in the language L4
which are approximately finitely satisfied in M. We will often
omit the superscript and subscript if they are clear from context.
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Saturated models

Fix an infinite cardinal «.

@ M is k-saturated if for all A< M such that |A| < x and
pe S(A), pis realized in M.

@ M is saturated if M is x(M)-saturated.

@ M is k-universal if whenever N = M and x(N) < « then N
embeds into M elementarily.

@ M s x-homogeneous if whenever 2 and b are B
< k-sequences of the same length and (M, a) = (M, b)
then for all a e I\_/I there is b € M such that
(M,a,a) = (M, b, b).

Proposition
M is k-saturated iff it is x-universal and k-homogeneous.
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Saturated models, cont'd

Proposition

Given any x and model M with «, x(M) = x(L), there is N,
M < N such that N is k™ -saturated and x(N) < x(M)*.

@ Sketch of proof: Start with M and form a chain of models
M, fora < k™.

@ Make sure that at each stage the density character is
< x(M)~.

@ This is possible because to start there will be at most
x(M)" many subsets of size x to worry about and at most
2" many types over each set.

@ By using elementary diagrams and downward
Lowenheim-Skolem, we will be able to realize all these
types without making the density character go above

xX(M)~.

Bradd Hart Quantifier elimination and examples



Saturated models, cont'd

@ Note that with a little help from cardinal arithmetic, we can
have saturated models. For instance, if 2% = Ry, then any
separable model can be extended to a saturated model of
density character Ny.

If My, for n e N are L-structures for a separable language L then
[ Tnen Mn/U is Ry -saturated.

@ Proof: Suppose that A is a countable subset of [ [, Mn/U
and p e S(A).

@ Since L is separable, p is determined by countably many
conditions ¢;(X) < r; for i e N.
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Saturated models, cont'd

@ Since this type is approximately finitely satisfied in
[ Inen Mn/U, we can fix Uy € U such that
o U2o2U2Us...,
o mkeN Ux = &, and
© for every j e Uy, M, satisfies infz ¢;(X) < r; for all i < k.
@ Now define a tuple a;; if j ¢ Uy then define it arbitrarily.
OtherW|se Ifj € U\Uk.1 thenfix b e M; such that
wi(b) < ri+1/kforall i < k and let 2 aj = b.

° Exermse: ain [ [,cn Mn/U realizes p. The point is that for
every j € Uk, i(@) < ri +1/k for all i < k (it could be
better) and so gj(a) < r;in [ [,cny Mn/U.
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Atomic models

@ A model M is atomic if all types realized in M are principal.

@ A model M is prime if whenever M = N then M embeds
elementarily into N.

Proposition

If L is a separable language and M is a prime model then M is
atomic.

@ Proof: Omitting types.

If L is a separable language and M is a separable atomic
L-structure then M is prime and unique up to isomorphism.
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Proof of theorem

@ First we will show that if N= M and N is separable and
atomic then M =~ N.
@ We construct two sequences

ad,a)al,aaas, . ..

in M and
b3, bb], bELILE, . .
in N such that
@ allinitials segments of the same length have the same type
i.e. for any k there is a fixed type for & ... a; and by . .. b}
independent of n > k.
© for every k, (a : n > k) and (bj : n > k) form Cauchy
sequences converging to ax and bk respectively.
© {ak: ke N}and {bg: ke N} are dense in M and N
respectively.
@ If we can achieve this then the map sending ak to by
extends to an isomorphism from M to N.
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Proof of theorem, cont’d

@ To start, we enumerate countable dense subsets in M and
N; call them (¢ : k € N) and (dk : k € N).

@ At stage 0, let 38 = Cy. By atomicity, the type of ¢; is
principal and hence realized in N by some bg.

@ In general, we alternate steps either choosing a ¢ or dx
and we revisit each ¢, and di infinitely often in the
construction.

@ Assume we have chosen &j . .. aj; already and we consider
whatever cy is given to us at this stage.

@ Let p(xo,...,xn) bethetype of aj...a; and q(xo, ..., Xn41)
be the type of a7 . .. ajck.

@ Suppose that dq(Xo, . . ., Xn11) is the distance function to
the zero set of the type g - remember q is principal.

@ So dM(af...a), ck) =0 which means
inf, d)(aj...a, y) = 0.
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Proof of theorem, cont’d

@ by ... bj satisfies p by assumption so
inf, dM (b0 ... b3, y) = 0.

@ This means we can find bj*' ... b7} realizing g and such
that d(b?, by < 1/2"fori = 0,...,n.

@ This guarantees we have the required Cauchy sequences
and we have the required density as well.

@ If e > 0, choose N large enough so that >}, 1/2" <.
Suppose we visit ¢, at stage t > N.

@ Then ay is within ¢ of ¢, and so the ak’s are dense in M.
Similarly, the by’s are dense in N.

@ This shows M =~ N.

@ To see that if M is separable and atomic then M is prime,
we use the same argument but only in the forth direction.
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Imaginaries: the discrete case, version 1

Fix a complete theory T in a language L.

Suppose that E(X, y) is an L-formula that defines an
equivalence relation in models of T.

Form a new language Lg = L u {Sg, mg} where Sgis a
new sort and g is a new function symbols with domain the
sorts of the variables x and range Sk.

If M = T then we expand it to a model Mg of Lg by letting
Sk be the equivalence classes of E in M and 7¢ the
projection from appropriate tuples to their equivalence
class. We let Tg = Th(Mg).

We consider the class of models of a first order theory as a
category with the models as objects and elementary maps
as the morphisms.
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Imaginaries: the discrete case, version 1, cont'd

@ There is a forgetful functor F : Mod(Tg) — Mod(T) which
is just the reduct of the Lg structures to L. We also have
the functor which sends M to Mg which goes in the other
direction. This pair is an equivalence of categories; that is:

@ F(Mg) = M (in fact equals M),

©Q F(N)ex=N,and

© F: Hom(N,N") — Hom(F(N), F(N")) is a bijection for all
N, N’ € Mod(Tg).

@ One says that T is a conservative extension of T.

Bradd Hart Quantifier elimination and examples



Imaginaries: the discrete case, version 2

@ Suppose that (X, ¥) is an L-formula and X and y needn’t
have equal length.

@ Formanew language L, = LU {S,, m,} where S, is a new
sort and ,, is a new function symbols with domain the
sorts of the variables y and range S,,.

@ Consider the formula E,(y,y’) := VX(o(X,¥) < o(X,¥);
this is an equivalence relation in all L-structures.

@ If M = T then we expand it to a model M,, of L, by letting
S, be the equivalence classes of E,, in M and =, the
projection from appropriate tuples to their equivalence
class. We let T, = Th(M,).

@ The forgetful functor F : Mod(T,) — Mod(T) is an
equivalence of categories and T, is a conservative
extension of T.
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Imaginaries: the discrete case, version 2, cont'd

@ T, looks like a more general construction but it is not.

@ What this construction does is create an element in S, for

every definable set of the form ¢ (M, a). This is often called
adding canonical parameters for the following reason:

Suppose that M is a saturated model of T. Then for all
automorphisms f of M, f fixes p(M, a) setwise iff f fixes
a/E, (f induces a unique automorphism of M, which
extends f).

lterating either version of this construction over all possible
formulas (or equivalence relations) leads to a theory called
T€9 which is essentially closed under the addition of
canonical parameters. It has a special place among the
conservatives extensions of T; we will look at this next
week.
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Imaginaries: the continuous case, canonical

parameters

@ Fix a complete theory T in a continuous language L and fix
aformula ¢(x, y).

@ Consider the formula p,(y, y’) := supx [e(X,¥) — o(X, ¥)|.

@ p, defines a pseudo-metric on the product of the sorts
corresponding to the y variables in all L-structures and
po(¥,¥') = 0 means p(X,y) and ¢(X, y') define the same
function of the x-variables.

@ We consider L, = L u {S,, d,, n,} where S, is a new sort,
d, is its metric symbol and =, is a function from the sorts
of the y variables to S,,. The uniform continuity modulus for
T, is the same as the uniform continuity modulus for the y
variables in ¢.
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Imaginaries: the continuous case, canonical

parameters, cont'd

@ If Mis a model of T and X(M) is the product of the sorts
corresponding to the y variables the p,, is a pseudo-metric
on X(M). We define an expansion M, of M to L, by letting
S,(M,) = X(M)/p, and d,, is the induced metric; m,, is the
projection from X(M) to S,(M,,).

@ Welet T, = Th(M,) and again there is a forgetful function
from Mod(T,) to Mod(T). The question is: if N is a model
of T, and M = F(N) then why is N = M,?

@ T, knows the following information: for all m, m’ € X(M),

dgo(ﬂcp(m)777<p(ml)) = p<p(m, m/)

and that 7, is surjective.
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Imaginaries: the continuous case, canonical

parameters, cont'd

@ These facts guarantee that the map i : S,(N) — X(M)/p,,
given by

i(n) = wé”“”(m) for any m e X(M) such that wg(m) =n

is well-defined and a surjective isometry.

@ The elements of the sort S, can be thought of as the
canonical parameters asociated to the function ¢(x, y) of
the x variables when the y variables are fixed.
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Imaginaries: the continuous case, products

@ Fix a complete theory T in a continuous language L.

@ Suppose S = (S, : ne N) is a sequence of sorts from L.
The goal is to create [ [,,., Sh @s a new sort.

@ Take a model of T and let Xz = [ [,,cn Xs,(M). We need a
metric on Xz.

@ Suppose d; is the metric on S; with bound B;; let

- di(xi, yi
a(x,7) = Y, A0
ieN !

where X,y € Xz(M).

@ dis a metric on Xz(M) which is complete and bounded by
1.

@ We have projection maps =; : Xg(M) — Xs (M) sending x
to x;.

@ Notice that if d(X,¥) < 6 then d;(x;, y;) < Bi2'§ so mj is
uniformly continuous.
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Imaginaries: the continuous case, products contd

@ LetLg = Lu {Sg,dg, {m;: i e N}} where Sgis a new sort,
dg is its metric symbol and r; is a function symbol with
domain Sg, range S; and uniform continuity modulus given
as above.

@ The construction above shows how to take a model M of T
and produce a model Mz of L. Let Tz = Th(Mg).

@ Once again we have a forgetful functor
F : Mod(Tg) — Mod(T) and we would like to see that it is
an equivalence of categories.

@ Weneedtoseeif N = Tgand M = F(N) then Mg = N
fixing M.
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Imaginaries: the continuous case, products contd

@ For ne Xg(N), let p(n) = (mi(n) : i€ N) € [ [jen X5,(M).
@ If this map is a surjective isometry then it commutes with
the 7;’s and so is an isomorphism.

@ Notice that follows from the theory Tz that for all
n,n' e Xg(N),and ke N,

dz(n,n) =] d"<”"(';),.’2?"(”')> < %

i<k

which shows that p is an isometry.
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Imaginaries: the continuous case, products contd

@ ltis also part of the theory that for any k

sup ... sup inf max{d;(x;, mi(y)) : i < k}

X1€S; xc€S Y€S3

evaluates to 0.
@ By completeness of Xz(N), p is surjective.

@ So Mgz = N fixing M and Tz is a conservative extension of
T.

@ One issue is that the metric we defined is not canonical -

there are other metrics we could have used. We will have
to return to this.
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