The omitting types theorem

Proposition

A type p is principal iff the logic and metric topologies agree
locally at p.

Theorem

Suppose that L is a separable language, T is a complete theory
in L and p is a finitely satisfiable type. Then there is a model
which omits p iff p is not principal.

| \

A\

Proof: Suppose that p is not principal. We will construct a
model of T using a Henkin construction.
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The omitting types theorem, contd

@ Since the language is separable, we can accomplish this
Henkin construction in countably many steps. The key
issue will be to guarantee that every constant not only
doesn’t realize p but stays some uniform distance away
from potential realizations of p so that in the completion, p
will not be realized.

@ Since p is not principal, we know that there is some € so
that the ball of radius € around p does not contain any
open set from the logic topology. That is, for every formula
e and every r, if O, , is not empty then it contains g such
that d(p, q) > e.
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The omitting types theorem, contd

@ If we take the g from the previous line, we get that the set
of conditions

p(x) v aly) ui{dx,y) < ¢/2}

is not satisfiable. So by compactness, there is some
condition ¢ < sin g such that
p(x) u {Y < s,d(x,y) < ¢/2} is not satisfiable.

@ By approximate finite satisfiability, we even know that there
is some nsuch that p(x) u {¢y < s+1/n,d(x,y) <¢/2}is
not satisfiable.

@ Now the general set-up for the Henkin construction will
have us looking at finitely many conditions y;(c,¢) < r;
which are finitely satisfiable with T; here we have
highlighted the constant ¢ which we want to guarantee will
not satisfy anything close to p.
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The omitting types theorem, contd

@ We consider the intersection of the basic open sets given
by infy ¢;i(x, y) < r; and obtain some formula v(x) and
number s such that any type g in

mloinfj_/ Pisli N O@Z’,S

must satisfy d(p, q) > ¢/2.

@ This proof would work if you try to omit countably many
non-principal types.
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Another characterization of definable zero sets

Suppose that M is a metric structure and Z = M" is a closed
subset. Then the following are equivalent:

@ Z is a definable zero set.

© For any definable predicate P with domain M" x M™,
Q(x) =inf{P(x, z) : ze Z} is a definable predicate.

@ From bottom to top, just let P(x, y) be d(x, y).

@ In the other direction, P is uniformly continuous so using
MTFMS 2.10 again, we can find continuous « such that
|P(x,z) — P(y,z)| < a(d(x,y)) for all x e M™. Consider
the formula inf,(P(x, z) + a(d(z, Z))). We claim this is Q.

@ The conclusion here is that definable zero sets are exactly
those sets which you can quantify over.

@ Particularly useful examples of definable sets are ranges of
terms.
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Quantifier elimination

Definition

We say that a theory T has quantifier elimination if for any
formula p(x) and e > 0 there is a quantifier-free formula 4 (x)
such that

sgplw()?) —Y(X)[ <e

holds in all models of T.

Suppose that T is a complete theory in a separable language.
T has quantifier elimination iff whenever M and N are
separable models of T, A is a finitely generated substructure of
both M and N and U is a non-principal ultrafilter on N then M
embeds into NY fixing A.
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Proof of the theorem

@ From left to right: Fix a countable dense subset of M,
m = (b; : i € N) and consider the type tp(m/A).

@ This type is finitely satisfiable in M and any finite
approximation to it is approximated by a quantifier free
formula by quantifier elimination.

@ So this type is also finitely satisfied in N which means it is
realized in NY and we get an embedding of M into N over
A.

@ From right to left: It is enough to show that any inf formula
is approximated by a quantifier-free formula. Fix any such
o(X).

@ Consider X,

{lv) =oM< 1/n:yisaff,ne N} u {lo(X) — ¢(¥)| = €}
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Proof of the theorem, cont’d

o If X, is finitely satisfiable for some e we contradict our
assumption; here is how:

@ If X, is not finitely satisfiable for any e then the proof ends
by the Stone-Weierstrass Theorem.

@ In more detail: if we consider types with only conditions
involving inf-formulas or gffs then this space is compact via
the similarly restricted logic topology.

@ The failure of finite satisfiability of X, for every ¢ tells us that
the gffs determine any function defined by an inf formula
from this type space to R.
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Example 1: Urysohn space

For this example we will only consider metric spaces with
metrics bounded by 1.

We say that a separable metric space X is universal if
every separable metric space can be embedded into X it
is homogeneous if whenever f is a finite isometry on X, it
can be extended to an automorphism.

The goal is to construct a separable metric space which is
both universal and homogeneous; the construction is the
analogue of the Fraissé construction for metric structures.
We start with the class C of finite metric spaces whose
metrics take rational values in [0, 1].

We describe free amalgamation for this class: Suppose
that A, B, C € C and A < B, C. The underlying set of the
free amalgamation B« C is B Li4 C, the disjoint union of B
and C over A.
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Example 1: Urysohn space, contd

@ To define the metric on the free amalgamation, we need
only define the distance from elements of B\A to C\A.
Suppose b and c are in those sets respectively. Define
d(b,c) by

min(d(b, a) + d(a,c))
acA

@ Exercise: check that this defines a metric on the free
amalgamation and that B« Cisin C.

@ We now construct a separable space U/, Urysohn space, by
induction. | leave the details to you. The key point is that up
to isomorphism, C contains only countably many objects.

@ U is the completion of the metric space built as a countable
union of a chain X € X; € X5... such that each X; e C
and for every finite F < X; and every G € C such that
F < Gthereis j > i such that F « G embeds into X; over F.
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Example 1: Urysohn space, contd

@ U as described is a metric structure in the language with
only one sort and whose only relation symbol is the metric
symbol.

@ For every possible finite metric configuration r = r; for
1 < i,j < nthere is a formula, Cz(X), the configuration
formula for 7 written as

maxi7j|d(x,~, Xj) — I’,'j|

which measures how far a tuple X is from realizing the
given configuration.

@ Claim: Given a configuration r and a one-point extension s,
for every ¢ > O thereis a 6 > 0 such thatif in U4, C:;(a) < o
then inf,Cs(a,y) < e.
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The theory of Urysohn space

@ We can write the last claim in continuous logic as

sup min{é ~ Cz(X), igf Cs(x,y) ~ €}
X

@ Claim: If the value of these sentences are 0 in metric
structures then they are elementarily equivalent. In fact, if
these sentences are 0 in two separable structures then
those structures are isomorphic.
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