A topology on the type space

We fix a language L and a complete theory T in this language.
Equivalently we fix a metric structure M for the language L and
let T = Th(M). For a tuple of sorts s from L and matching
variables x we define the set Sg(T) to be all complete types in
the variables x realized in models of T.

We put a topology on Sz(T) by letting the basic open sets be
defined as follows: for every formula ¢(x) and real number r, let

Our={pe Ss(T):p?* <r}

This is called the logic topology on the type space.

The logic topology on Sg(T) is compact.
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A metric on the type space

@ Define a metric on Sg(T) as follows: for p, g € S5(T),
d(p, q) is defined to be the infinum of d¥(a, b) where M
ranges over all models of T, a € M is a realization of p and
b € M is a realization of q. d is computed as the maximum
of the values ds as s ranges over the sorts in s.

@ Claim: d defines a metric on Sg(T).

@ Notice that d(p, q) is always realized - this follows by
compactness.

@ The only issue is the triangle inequality - another use of
compactness.

Proposition
The metric topology on Sg(T) refines the logic topology.
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Mysterious question

@ When do the metric and logic topologies on Sz(T) coincide
locally?

@ Unravelling this a little bit, one sees that we are asking
when the distance to a type is in some way defined by
conditions at least approximately.
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Zero sets and distance predicates

@ A zero set is the set of realizations of a type i.e. if pis a
type and M is an L-structure, we call the set of tuples
a € M which satisfy all the conditions in p the zero set of p.

@ This looks like strange terminology - let me explain.

@ If M is a metric space and X is a non-empty closed subset
we call P(x) = d(x, X) =inf{d(x,y) : y € X} a distance
predicate for X.

@ We call the zero set X in M of some type p a definable
zero set or principal if the distance predicate for X is a
definable predicate (in M).
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Zero sets and distance predicates, cont'd

@ If P(x) = d(x, p(M)) is a definable predicate in M and
M < N then what does P(x) define in N?

@ We know (M, P) < (N, PV) since P is a definable
predicate. The issue is: does PN = d(x, p(N)) in N?
@ This is really two questions:

@ Is PV the distance function to its zero set? and
© Isits zero set p(N)?

@ The answer to the second question is: yes. Proof:
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Zero sets and distance predicates, cont'd
Theorem (MTFMS, 9.12)

Suppose that (M, F) is a metric structure which satisfies
supint max(| Ry}, [£(x) =a(y)[) =0

and
5LE g =) & etls 7)) = ¢

Thenif D = {x € M : F(x) = 0} then F(x) = d(x, D) for all
xeM.

Corollary

The notion of a type being principal does not depend on the
structure in which it is defined.
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Definable sets

Proposition (Mysterious answer)

A type p is principal iff the logic and metric topologies agree
locally at p.

Proposition (MTFMS, 9.19)
The following are equivalent:
@ p is principal.
© There are formulas ¢, and numbers 6, > 0 such that for
every m, p¥m =0

if “o(X) < 6m”is in q then d(p, q) < rln
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A useful lemma

Lemma (MTFMS, 2.10)
Suppose that F, G : X — [0, 1] are functions such that

Ve>039>0Vxe X (F(x)<d = G(x)<e¢)

Then there exists an increasing, continuous function
a : [0,1] — [0, 1] such that «(0) = 0 and

Vx € X (G(x) < a(F(x))
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The omitting types theorem

Suppose that L is a separable language, T is a complete theory
in L and p is a finitely satisfiable type. Then there is a model
which omits p iff p is not principal.

Proof:

@ If pis principal we must see that every model of T realizes
p. So fix a model M of T and since p is finitely satisfiable it
is realized in MY for any non-principal ultrafilter U. So we
have the situation that if P is the definable predicate for
d(x, p(M)) then (M, P) < (MY, P).

@ But then infy P(x) = 0 in MY and so for some ¢ less than
the bound on the metric in the sort of x, for all a € M,
d(a,p(M)) < 6. So this means p(M) is non-empty.

@ Now suppose that p is not principal. We will construct a
model of T using a Henkin construction.
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The omitting types theorem, contd

@ Since the language is separable, we can accomplish this
Henkin construction in countably many steps. The key
issue will be to guarantee that every constant not only
doesn’t realize p but stays some uniform distance away
from potential realizations of p so that in the completion, p
will not be realized.

@ Since p is not principal, we know that there is some € so
that the ball of radius € around p does not contain any
open set from the logic topology. That is, for every formula
e and every r, if O, , is not empty then it contains g such
that d(p, q) > e.
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The omitting types theorem, contd

@ If we take the g from the previous line, we get that the set
of conditions

p(x)uq(y)u{d(x,y)} <e/2

is not satisfiable. So by compactness, there is some
condition ¢ < sin g such that
p(x)uU{y < s,d(x,y) < e/2} is not satisfiable.

@ By approximate finite satisfiability, we even know that there
is some nsuch that p(x) U {¢y < s+1/n,d(x,y) < e€/2} is
not satisfiable.

@ Now the general set-up for the Henkin construction will
have us looking at finitely many conditions ¢;(c, ) < r;
which are finitely satisfiable with T; here we have
highlighted the constant ¢ which we want to guarantee will
not satisfy anything close to p.
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The omitting types theorem, contd

@ We consider the intersection of the basic open sets given
by infy ¢;i(x, y) < r; and obtain some formula v(x) and
number s such that any type g in

mloinfj_/ Pisli N O‘f%s

must satisfy d(p, q) > ¢/2.

@ This proof would work if you try to omit countably many
non-principal types.
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Another characterization of definable zero sets

Suppose that M is a metric structure and Z C M" is a closed
subset. Then the following are equivalent:

@ Z is a definable zero set.

© For any definable predicate P with domain M" x M™,
Q(x) =inf{P(x, z) : z € Z} is a definable predicate.

@ From bottom to top, just let P(x, y) be d(x, y).

@ In the other direction, P is uniformly continuous so using
MTFMS 2.10 again, we can find continuous « such that
|P(x,z) — P(y,z)| < a(d(x,y)) for all x € M™. Consider
the formula inf,(P(x, z) + a(d(z, Z))). We claim this is Q.

@ The conclusion here is that definable zero sets are exactly
those sets which you can quantify over.

@ Particularly useful examples of definable sets are ranges of
terms.
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