Averages

If T is stable, o(x,y) is a formula and ¢ > 0 then there is a
number N = N(p, €) such that if(a; : i € N) is an indiscernible
sequence and b is a parameter matching the y-variable then if
S = limsup ¢(a;, b) then |{i : p(a;,b) < S —¢€}| < N.

@ Proof: Suppose not. By compactness we want to construct
an indiscernible sequence {c; : i € Q) such that for any
re R\Q, the p-type
pr=Ae(ci,y) < S—e:i<rtuf{p(c,y)=2S—¢€2:i>r}
is satisfiable.

@ If we fix any finitely many conditions in p, we will want the
value ¢(cj, y) to be low (< S — ¢) for N values of i and high
(= S —¢€/2) for N larger values of i.

Bradd Hart C*-algebras



Averages, contd

@ Consider the indiscernible sequence {a; : i € N) and
parameter b which are counter-examples to the claim for

N.

@ But then with this sequence sulfficiently pruned one can
witness N low values and N high values of ¢ relative to this

choice of b.
@ The collection of p-types p, contradicts stability.

Bradd Hart C*-algebras



Definability

@ We consider the following formula Avg(N)(ry, ..., ron_1):

min  maxt;
we[2N-1]N iew

@ The point of using this formula is that if {¢; : i € N) is an
indiscernible sequence, b is any element and ¢ is a
formula then if N = N(p, ¢) then
AVQ(N)(Lp(C1 , b), ce (p(CgN,1 s b)) is within e of
limsup ¢(c;, b).

@ Now suppose that p e S(M). Remember that p is definable
over M as we said last week say via being finitely
determined.

@ We will create a Morley sequence {c; : i € N) in the type of
p and use this sequence to define a global definable type
extending p. We do this as follows:
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Definability, cont'd

@ Let ¢y realize p; if we have defined c., then let ¢, realize
the definable extension of p to Mc.,.

@ Since the sequence of ¢;’s realize definable extensions of p
they form a Morley sequence.

@ For any formula ¢ and € > 0, let N = N(¢p, ) and consider

dﬁ@(}/) = Avg(N)(QO(C'l’y)a NN 780(02N71 ) y))
@ Define a global type p by the conditions:

@ This type is consistent since any finite approximation of it is
satisfied by cy for large enough N.
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Definability, cont'd

@ Itis also definable by the d;»’s. The limit of these formulas
are definable predicates at first defined over the Morley
sequence.

@ But these formulas are also equivalent to the ¢-definitions
of p and so are equivalent to definable predicates over M.

@ Conclusion: p is definable over M by the formulas
im0 dge(y)-
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A proof of the remaining lemma from stability

Suppose T is stable and that p e S(M). The following are
equivalent:

Q@ pu w(x, a) is contained in a definable extension of p.
Q Ifg=t(a/M) then dyp € p.
©Q p u ¢(x, a) does not divide over M.

@ We know that a definable extension does not divide so 1
implies 3.

@ If pu ¢(x, a) does not divide over M then choose a Morley
sequence in g which is used to define dgy.

@ By assumption this is consistent with p and p is a complete
type soitis in p so 3 implies 2.
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Proof, cont'd

@ To see 2 implies 1, let p be the global definable extension
of p. Let (g; : i € N) be the Morley sequence used to define
dqp and let a,, be an additional realization of the definable
extension of q over the entire Morley sequence.

@ Since dyy € p, we have ¢(x, a,) € p. By automorphisms
then p U ¢(x, a) is contained in a definable extension of p.
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Recognizing elementarity

Suppose that K is a class of metric structures in a language L.

@ K is the class of models of some theory T iff K is closed
under ultraproducts, elementary submodels and
isomorphismes.

© K is the class of models of a universal theory iff K is
closed under ultraproducts, submodels and isomorphisms.

@ Proof: Left to right is clear in both cases. In the other
direction in the first case, let
T=ThK)={p: ME¢foral Me K}.

@ If M is any model of T, consider the elementary diagram of
M, Diage/(M). For any finite A(m) < Diage/ (M), there must
be Ma € K such that Ma = infz A(X).

@ M then embeds in an ultraproduct of the Ma’s.
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Recognizing elementarity, contd

@ For the second case, let T be the universal theory of K
and use the atomic diagram of M.

@ It is worth recording that the ultrafilter used here is what is
called regular: an ultrafilter U on / of cardinality A is called
regular if there is a family of {V,, : @ < A} < U so that for
anyiel, {a:ie V,}isfinite.

If K is a class of L-structures and

T =Th(K) ={¢: M=y forall M e K} then any model of T
can be elementarily embedded in an ultraproduct of structures
from K via a regular ultrafilter.
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C*-algebras - a case study

Definition

Suppose that H is a Hilbert space. We say that A is a bounded
(linear) operator on H if it is linear and there is a number B
such that for all x € H, |Ax| < B|x|. The infinum of such B’s is
called the operator norm of A, |A|. We write B(H) for the set of
all bounded operators on H.

Lemma
@ A linear operator A on H is bounded iff it is continuous iff it
is continuous at 0.
© B(H) is a unital complex algebra i.e. B(H) is closed under
+, composition, multiplication by scalars from C and
contains the identity map on H.
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C*-algebras, contd

Lemma

@ Suppose that \ : H— C is a linear functional. Then there
is a unique y € H such that \(x) = {x, y).

© For Ae B(H), there is a uniquely defined operator A* such
that for all x,y € H,

<AX7y> = <X7A*y>

© The operation = is an involution on B(H).

Definition
A C*-algebra is an operator-norm closed #-subalgebra of B(H).
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Examples of C*-algebras

@ If His n-dimensional then M,(C) is a C*-algebra.

@ Suppose that X is a compact subset of R. Let [2(X) be
square-integrable complex functions on X. This is a Hilbert
space via the inner product

@@=L@w

If C(X) is the collection of continuous complex functions on
X then for any f € C(X), we can associate

Ar: C(X) — C(X) where A¢(g) = fg. As is linear and one
can check that C(X) is a C*-algebra: A} = A; and

HAfH = SUPxex |f(X)|
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Ultraproducts of C*-algebras

@ Suppose that A; < B(H;) are C*-algebras for i € I and U is
an ultrafilter on /. What would it mean to have an
ultraproduct of these algebras?

@ What would it act on? H = [ [,., Hi/U, the ultraproduct of
the Hilbert spaces which we have already defined.

@ We want to consider only bounded operators on H so let’s
consider the set

A={(ai:ielye]]A;:forsomeB,|aj < Bforallie I}
i€l

@ Forxe Hand ac A, let a(x) =<aj(x;) : i e I)/U.

@ This makes sense since the sequence a is bounded and is
well-defined since H is the ultraproduct of the Hilbert
spaces H;. You can check this is linear.

@ We let the ultraproduct of the A;’'s modulo U be the set of
operators on H in A. One checks that this is a C*-algebra:
it is easy to check that it is closed under *; for norm-closed
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Back to the case study

@ So we have found a class, C*-algebras, that is closed
under ultraproducts and subalgebras (use the same Hilbert
space and make sure you are a norm-closed *-algebra).

@ So (!) C*-algebras should be captured by continous model
theory - how?

@ Some of the issues here are old: the metric from the
operator norm is unbounded and so we will have to
consider operator-norm balls of fixed radius as sorts and
piece the algebra together. Once we do that though all
issues of uniform continuity of +, x and scalar
multiplication disappear. * is uniformly continuous no
matter what we do.

@ In the case of C*-algebras it is possible to include
additional sorts for the Hilbert space being acted on. This
isn’t necessary for two reasons:
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A case study, contd

@ First, we can recover a Hilbert space from an algebraic
characterization of C*-algebras due to Gel'fand and
Naimark which is useful in its own right.

@ Second, adding the Hilbert space doesn’t generalize to
other contexts notably von Neumann algebras.

@ Let’s try to capture C*-algebras axiomatically in continuous
model theory:

@ We introduce sorts B, for the operator-norm ball of radius
nforeach ne N.

@ As with Hilbert space, we introduce sorted versions of +,
x, scalar multiplication and = which do appropriate things
when restricted to the sorts.

@ Our C*-algebras will be unital and so there will also be a 1
and 0 both in B;.
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Axioms for C*-algebras

o X+ (y+2)=(Xx+y)+z,x+0=x,x+(—x) =0 (where
—x is the scalar —1 actingon x), x + y = y + x,
AMpx) = Ap)x, A(X +¥) = X+ Ay, (A + p)Xx = AX + px.
° 1x =X, x(yz) = (xy)z, M(xy) = (Ax)y = x(Ay),
x(y +2) = xy + xz;

@ (x*)* = x, x+y) = X* + y*, (AX)* = \x*
° (xy)* =y*x

@ d(x,y) =d(x —y,0); we write |x|| for d(x,0).

o [xy| < |x[lyl

o [Ax| = [Allx]

° [x*x| = |x|?

® SUPgep, [a] <1
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Consequence of the axioms

@ The first set of axioms say that any model is a C-vector
space.

@ The second group guarantee that any model is an algebra.

@ The third and fourth items make sure that it is a *-algebra.

@ Most of the axioms involving the norm guarantee that we
have a normed linear space (note that the relationship with
the metric guarantees the triangle inequality).

@ |x*x| = |x|? is the so-called C*-equality and one verifies
that this holds in the concrete representation of
C*-algebras as defined.

@ The last axiom goes partway to guaranteeing that the unit
ball has the correct meaning; notice that multiplication by
N helps determine the N-ball.
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Some operator algebra background

@ We’'ll call a complex unital Banach algebra with an
involution = satisfying the C*-identity an abstract
Cr-algebra.

@ For any ae A, A an abstract C*-algebra we define
sp(a) = {\: A4 — ais not invertible}.

@ If Ais an abstract C*-algebra and a is self-adjoint (a* = a)
then sp(a) is a compact subset of R.
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Some operator algebra background, cont’'d

Theorem (Spectral Theorem)

Suppose that A is an abstract C*-algebra and a€ A is
self-adjoint. Then the abstract C*-subalgebra C*(a) generated
by a and the identity on A is isomorphic to C(sp(a)) via an
isomorphism sending a to idspa) and idu to the constant
function 1.

Theorem (Gel’fand-Naimark)

Any abstract C*-algebra A is *-isomorphic to a C*-algebra of
operators on a Hilbert space.
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Correctness of the axioms

We now need to show that if we have any model of our
axioms then we determine a C*-algebra uniquely up to
isomorphism.

The Gel'fand-Naimark theorem tells us that if we
reconstruct the algebra out of the sorts B, then we have a
Cr-algebra of operators on a Hilbert space.

The subtle problem is that we don’t know if the sorts By
are interpreted correctly i.e. is By really the operator norm
ball of radius N for this algebra.

We could fix this problem as we did with Hilbert spaces by
adding an axiom that makes sure that anything of norm N
really is in By however this axiom isn’t universal and
Cr-algebras are closed under substructures so this
wouldn’t be the right axiom.

Next time we will see how the spectral theorem can save
us.
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