Fixing the integral argument in the Szeméredi Regularity Lemma
Let's recall some of the notation we had before the integral argument:
We had

1. $\epsilon>0$ fixed,
2. counter-examples to the Lemma G_{K} for each K,
3. an ultraproduct $G=\prod_{\mathcal{U}} G_{K}$ in the inductive language we created,
4. a measure on G we were calling μ that was the ultralimit of the counting measure on the G_{K} 's and
5. we had formulas U_{1}, \ldots, U_{n} in our language \mathcal{L} which created a partition of $G\left(\right.$ and G_{K} for almost all $\left.K\right)$.

Each U_{i}, when interpreted, could be assumed to have measure greater than 0 . This partition was related to the function $h \mathrm{I}$ described in the lecture in the following way:

$$
h=\sum_{1 \leq i, j \leq n} \alpha_{i, j} \chi_{U_{i}} \times \chi_{U_{j}}+h^{\prime}
$$

where $\left\|h^{\prime}\right\|_{2}<\frac{\epsilon^{4}}{4}$ and $\left\|\chi_{E}-h\right\|_{2}=0$.
We wanted to try to show that U_{1}, \ldots, U_{n} is ϵ-regular in an appropriate sense in G. Towards this end, we were computing the measure of the set B of bad pairs i, j; that is, the pairs for which

$$
R_{U_{i}, U_{j}} a n d S_{U_{i}, u_{j}} \text { are not empty for ultrafilter many } K
$$

or equivalently, $R_{U_{i}, U_{j}}$ and $S_{U_{i}, u_{j}}$ are non-empty in G. For such a bad i, j, we let

$$
\beta_{i, j}=\lim _{\mathcal{U}} \frac{\left|E \cap R_{U_{i}, U_{j}} \times S_{U_{i}, u_{j}}\right|}{\left|R_{U_{i}, U_{j}}\right|\left|S_{U_{i}, u_{j}}\right|}=\frac{\mu\left(E \cap R_{U_{i}, U_{j}} \times S_{U_{i}, u_{j}}\right)}{\mu\left(S_{U_{i}, u_{j}}\right) \mu\left(R_{U_{i}, U_{j}}\right)}
$$

For any i, j, I want to compute $d\left(U_{i}, U_{j}\right)$ i.e. the edge density measured via μ between these two sets. We have

$$
\int \chi_{E} \chi_{U_{i} \times U_{j}} d \mu=\mu\left(E \cap\left(U_{i} \times U_{j}\right)\right.
$$

and by Cauchy-Schwartz

$$
\int\left(\chi_{E}-h\right) \chi_{U_{i} \times U_{j}}=0
$$

so after rearranging we get

$$
\mu\left(E \cap\left(U_{i} \times U_{j}\right)=\alpha_{i, j} \mu\left(U_{i}\right) \mu\left(U_{j}\right)+\int h^{\prime} \chi_{U_{i} \times U_{j}} d \mu\right.
$$

The last term is over-estimated by $\frac{\epsilon^{4}}{4} \mu\left(U_{i}\right) \mu\left(U_{j}\right)$ and when we divide by $\mu\left(U_{i}\right) \mu\left(U_{j}\right)$ we have

$$
d\left(U_{i}, U_{j}\right) \leq \alpha_{i, j}+\frac{\epsilon^{4}}{4}
$$

For bad i, j we also know that $\left|d\left(U_{i}, U_{j}\right)-\beta_{i, j}\right| \geq \epsilon$ and so putting this altogether, we have

$$
\left|\beta_{i, j}-\alpha_{i, j}\right| \geq \epsilon-\frac{\epsilon^{4}}{4} \text { which we will call } \delta
$$

Note that by possibly choosing ϵ small enough, we can assume that $\delta \geq \frac{\epsilon}{2}$.
Now suppose that B^{+}is the set of i, j in B for which $\alpha_{i, j} \geq \beta_{i, j}+\delta$ and

$$
Z=\cup_{i, j \in B^{+}} R_{U_{i}, U_{j}} \times S_{U_{i}, U_{j}}
$$

Toward a contradiction, suppose that $\mu\left(\cup_{i, j \in B^{+}} U_{i} \times U_{j}\right) \geq \frac{\epsilon}{2}$. Then, using a similar argument as above, we have

$$
\begin{aligned}
\left|\int h^{\prime} \chi_{Z} d \mu\right| & =\left|\int\left(\sum_{i, j} \alpha_{i, j} \chi_{U_{i} \times U_{j}} \chi_{Z}-\chi_{E} \chi_{Z}\right) d \mu\right| \\
& =\left|\sum_{i, j \in B^{+}}\left(\alpha_{i, j} \mu\left(R_{U_{i}, U_{j}}\right) \mu\left(S_{U_{i}, U_{j}}\right)-\int \chi_{E} \chi_{R_{U_{i}, U_{j}} \times S_{U_{j}, U_{j}}} d \mu\right)\right| \\
& \geq\left|\sum_{i, j \in B^{+}}\left(\alpha_{i, j} \mu\left(R_{U_{i}, U_{j}}\right) \mu\left(S_{U_{i}, U_{j}}\right)-\left(\alpha_{i, j}-\delta\right) \mu\left(R_{U_{i}, U_{j}}\right) \mu\left(S_{U_{i}, U_{j}}\right)\right) d \mu\right| \\
& =\sum_{i, j \in B^{+}} \delta \mu\left(R_{U_{i}, U_{j}}\right) \mu\left(S_{U_{i}, U_{j}}\right)
\end{aligned}
$$

and since $\mu\left(R_{U_{i}, U_{j}}\right)$ and $\mu\left(S_{U_{i}, U_{j}}\right)$ are greater than $\epsilon \mu\left(U_{i}\right)$ and $\epsilon \mu\left(U_{j}\right)$ respectively, this latter sum is greater than $\delta \epsilon^{2} \frac{\epsilon}{2}$ which in turn is greater than $\frac{\epsilon^{4}}{4}$. But again by Cauchy-Schwartz, $\left|\int h^{\prime} \chi_{Z}\right|<\frac{\epsilon^{4}}{4}$ which is a contradiction. So we conclude that $\mu\left(\cup_{i, j \in B^{+}} U_{i} \times U_{j}\right)<\frac{\epsilon}{2}$. A very similar argument gives us that $\mu\left(\cup_{i, j \in B \backslash B^{+}} U_{i} \times U_{j}\right)<\frac{\epsilon}{2}$. We conclude then that $\mu\left(\cup_{i, j \in B} U_{i} \times U_{j}\right)<\epsilon$.

This shows that the partition U_{1}, \ldots, U_{n} is ϵ-regular in the sense of the measure μ. By Łoś, for almost all K this is true in G_{K} and when $K>n$, this contradicts the original choice of G_{K}.

