Assignment 4, Math 701 Due Dec. 4, in class

- 1. We consider the ideal structure for the ring Z[x].
 - (a) (Optional) Show that every ideal I in Z[x] has the following form: there is a number k, polynomials $p_i \in Z[x]$ for $i \leq k$ and numbers r_0, \ldots, r_k such that:
 - i. $r_k | r_{k-1} \dots | r_0$, ii. $\deg(p_i) \leq i$ and the coefficient of x^i in p_i is r_i for $i \leq k$, and

 $I = p_0 Z[x] + p_1 Z[x] + \ldots + p_k Z[x].$

- (b) Show that Z[x] is not a principal ideal domain.
- (c) Give an example of a finitely generated module over Z[x] which cannot be written as a sum of cyclic submodules.
- 2. Show that $M_n(D)$ is a simple ring for a division ring D i.e. it has no proper, non-zero ideals.
- 3. Show that Q_8 has no degree 2 faithful representations over R. (See example 7 page 845 for Q_8 and question 10, 18.2 for a hint.)
- 4. Is it true that for a division ring D, that the identity map is an isomorphism between $M_n(D)^{op}$ and $M_n(D^{op})$?