Assignment 2, Math 4L3 Due Oct. 5, in class

- 1. Write out the proof indicated in class that every formula is equivalent to one in conjunctive normal form.
- 2. For your soul, as Goldrei says, write out the formal derivations of the following:
 - (a) $\neg \neg \varphi \vdash \varphi$ for any formula φ
 - (b) $\vdash (\varphi \rightarrow \varphi)$ for any formula φ
- 3. In class we proved the deduction theorem. In fact, we gave an algorithm for converting a proof of ψ from Γ and φ into a proof of $(\varphi \to \psi)$ from Γ . Give an upper bound on the length of the second proof in terms of the length of the first.
- 4. The completeness theorem tells us that if $\Gamma \models \varphi$ then there is a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \models \varphi$. It is a good exercise to try to think how to prove this without the completeness theorem; what is the problem? Without the completeness theorem, show that the following are equivalent:
 - (a) For every Γ , if every finite subset of Γ is satisfiable then Γ is satisfiable.
 - (b) For every Γ , if $\Gamma \models \varphi$ then there is a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \models \varphi$.