Assignment 1, Math 4L3 Due Sept. 19, in class

- 1. Show by induction on formulas that the number of right brackets in a formula is greater than or equal to the number of \rightarrow symbols.
- 2. Read pages 24 26 of the Goldrei book to learn the definition of subformula and subformula tree and then construct the tree corresponding to

$$(\neg((p \land \neg q) \lor (q \to r)) \to s)$$

and list all of its subformulas.

- 3. In class, we described an algorithm for recognizing when a string of propositional symbols was a formula. I repeat the algorithm here: for a string s,
 - (a) If s is empty then it is not accepted.
 - (b) If s has a single symbol then s is accepted iff s is a propositional variable.
 - (c) If s has length greater then 1 and either doesn't begin with a \neg or (, or s does not have an allowable bracket count then s is not accepted.
 - (d) Otherwise, if s has length greater than 1 and $s = \neg t$ then s is accepted iff t is accepted.
 - (e) If s begins with a (then locate the first binary connective \Box with bracket count 1; if there is none, s is not accepted.
 - (f) If we have identified \Box then since s has an allowable bracket count, s has the form $(s_1 \Box s_2)$ and in this case, s is accepted iff s_1 and s_2 are accepted.

Show that every formula is accepted by induction on formulas.