
Solutions to Mid-term test, Math 4GR3

1. Find the smallest number n such that there are exactly 14 non-isomorphic
abelian groups of size n. (As a warm up, ask yourself how many non-
isomorphic abelian groups there are of size p2, p3, . . . for a prime p.)

Solution: If we consider an abelian group G of size pn for a prime p
then the fundamental theorem of finite abelian groups says that this
group is isomorphic to one of the form, for some k,

Cpn1 × Cpn2 × . . .× Cpnk

with n1 ≤ n2 ≤ . . . nk and the isomorphism type is determined uniquely
the numbers n1, n2, . . . nk. We will have n1 + . . . nk = n. The number
of ways that a number n can be written, up to reordering, as the sum
of positive integers, is called the partition number of n, P (n). By what
was just said, the number of non-isomorphic abelian groups of size pn

is P (n). There is no closed formula for the partition numbers but in
this question we only need to look at small values: 2 = 2 = 1 + 1 so
P (2) = 2. P (3) = 3 since 3 = 2+1 = 2+ 1+ 1. Likewise, P (4) = 5
since 4 = 3+1 = 2+2 = 2+1+1=1+1+1+1. P (5) = 7 since 5 =
4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1. We also need
to notice that P (6) = 11 and P (7) = 15.

By a version of the fundamental theorem, we know that for any finite
abelian group G there are primes p1, . . . , pk such that G ∼= G1×. . .×Gk

for abelian groups Gi which are pi-groups. Since we are looking for 14
non-isomorphic abelian groups, we could have a group of size pa for
some a with partition number 14 or of size paqb where P (a)×P (b) = 14.
There is no number with partition number 14 and so we are in the
second case. To minimize things we want p = 2 with a = 5 and q = 3
with b = 2. This gives us groups of size 2532 = 288 which is the minimal
n.

2. Show that every group of order pn where p is a prime has a composition
series of length n + 1 and all quotients are isomorphic to Cp.

Proof Every finite group has some composition series. Suppose that G
is a group of size pn with a composition series G = Gk, Gk−1, Gk−2, . . . , G0 =
{e}. The quotient Gi+1/Gi is simple and also a p-group. We know that
the centre of a p-group is a normal subgroup and is not trivial. So the



only simple p-group up to isomorphism is Cp and each quotient in this
composition series is isomorphic to Cp. The length of this series is n+1
since |G| = (|Gk|/|Gk−1|) · |Gk−1/Gk−2| · . . . |G1|/|G0| = pn.

3. Show that every group of size 1225 = 5272 is abelian.

Proof The number of 5-Sylow subgroups of G of size 1225, n5, is con-
gruent to 1 modulo 5 and divides 49 so n5 = 1. Let H be the 5-Sylow
subgroup and notice that it is normal in G. Similarly, the number of
7-Sylow subgroups of G, n7 is congruent to 1 modulo 7 and divides 25
so n7 = 1. Let K be the 7-Sylow subgroup and again notice that it is
normal. Since the sizes of H and K are co-prime, H ∩K = {e}. This
means that G = HK. To see that the subgroups H and K commute
with each other, choose h ∈ H and k ∈ K and compute hkh−1k−1.
If we write it as (hkh−1)k−1 we see that this element is in K by the
normality of K in G. Similarly, if we write it as h(kh−1k−1) then by
the normality of H in G, this element is in H. So hkh−1k−1 = e or
hk = kh.

We also know that groups of size p2 when p is a prime are abelian
so both H and K are abelian. Putting this all together we get that
G ∼= H ×K which is abelian.

4. Show there is no simple group of order 48.

Proof Here is the proof I had in mind; I will also comment on a common
proof that many people wrote up afterwards.

If we look at the number of 2-Sylow subgroups of a group G of size
48, n2 then n2 is conjugate to 1 modulo 2 and divides 3. So n2 is
1 or 3. If it is 1 then our group is not simple. If it is 3 then there
are 3 2-Sylow subgroups X = {H1, H2, H3} and G acts on this set by
conjugation.This action induces a homomorphism ϕ from G to SX , the
permutation group on X. The image of ϕ is not trivial since by the
second Sylow theorem, any 2 2-Sylow subgroups are conjugate. But
by the first isomorphism theorem, G/ker(ϕ) ∼= Im(ϕ). |G| = 48 and
1 < |Im(ϕ)| ≤ 6 so ker(ϕ) is not G or {e} and is a normal subgroup
of G. So G is not simple.

Here is another proof which involves a little more counting: Suppose
we are in the case where n2 = 3 and we fix H and K two distinct 2-
Sylow subgroups. By a lemma from Judson, |HK| = |H||K|/|H ∩K|.



Now we know |H| = |K| = 16 and |HK| ≤ 48 so |H ∩ K| ≥ 162/48.
H 6= K and H ∩K is a subgroup so |H ∩K| = 8. So H ∩K has index
2 in both H and K which means that H and K are contained in the
normalizer of H ∩K. Since H 6= K, this means that N(H ∩K) has a
subgroup of size 16 and has more than 16 elements. This means that
N(H ∩K) = G and we have H ∩K is normal in G so G is not simple.
The only thing missing is a proof that if a subgroup has index 2 then
it is a normal subgroup.

Lemma: If H ⊂ G is an index 2 subgroup then H is normal in G.
Proof If h ∈ H then hHh−1 = H. If g ∈ G but not in H then gH
is disjoint from H. Similarly, Hg is disjoint from H. But since H has
index 2 in G, these two sets must be equal i.e. gH = Hg or equivalently,
gHg−1 = H. So H is normal in G.

This is a nice proof which uses some tricky counting. If you are going
to use proofs like this, please cite where you saw them.


