Solutions to Mid-term test, Math 4GR3

1. Find the smallest number n such that there are exactly 14 non-isomorphic abelian groups of size n. (As a warm up, ask yourself how many nonisomorphic abelian groups there are of size p^{2}, p^{3}, \ldots for a prime p.)
Solution: If we consider an abelian group G of size p^{n} for a prime p then the fundamental theorem of finite abelian groups says that this group is isomorphic to one of the form, for some k,

$$
C_{p^{n_{1}}} \times C_{p^{n_{2}}} \times \ldots \times C_{p^{n_{k}}}
$$

with $n_{1} \leq n_{2} \leq \ldots n_{k}$ and the isomorphism type is determined uniquely the numbers $n_{1}, n_{2}, \ldots n_{k}$. We will have $n_{1}+\ldots n_{k}=n$. The number of ways that a number n can be written, up to reordering, as the sum of positive integers, is called the partition number of $n, P(n)$. By what was just said, the number of non-isomorphic abelian groups of size p^{n} is $P(n)$. There is no closed formula for the partition numbers but in this question we only need to look at small values: $2=2=1+1$ so $P(2)=2 . P(3)=3$ since $3=2+1=2+1+1$. Likewise, $P(4)=5$ since $4=3+1=2+2=2+1+1=1+1+1+1 . \quad P(5)=7$ since $5=$ $4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1$. We also need to notice that $P(6)=11$ and $P(7)=15$.
By a version of the fundamental theorem, we know that for any finite abelian group G there are primes p_{1}, \ldots, p_{k} such that $G \cong G_{1} \times \ldots \times G_{k}$ for abelian groups G_{i} which are p_{i}-groups. Since we are looking for 14 non-isomorphic abelian groups, we could have a group of size p^{a} for some a with partition number 14 or of size $p^{a} q^{b}$ where $P(a) \times P(b)=14$. There is no number with partition number 14 and so we are in the second case. To minimize things we want $p=2$ with $a=5$ and $q=3$ with $b=2$. This gives us groups of $\operatorname{size} 2^{5} 3^{2}=288$ which is the minimal n.
2. Show that every group of order p^{n} where p is a prime has a composition series of length $n+1$ and all quotients are isomorphic to C_{p}.
Proof Every finite group has some composition series. Suppose that G is a group of size p^{n} with a composition series $G=G_{k}, G_{k-1}, G_{k-2}, \ldots, G_{0}=$ $\{e\}$. The quotient G_{i+1} / G_{i} is simple and also a p-group. We know that the centre of a p-group is a normal subgroup and is not trivial. So the
only simple p-group up to isomorphism is C_{p} and each quotient in this composition series is isomorphic to C_{p}. The length of this series is $n+1$ since $|G|=\left(\left|G_{k}\right| /\left|G_{k-1}\right|\right) \cdot\left|G_{k-1} / G_{k-2}\right| \cdot \ldots\left|G_{1}\right| /\left|G_{0}\right|=p^{n}$.
3. Show that every group of size $1225=5^{2} 7^{2}$ is abelian.

Proof The number of 5 -Sylow subgroups of G of size $1225, n_{5}$, is congruent to 1 modulo 5 and divides 49 so $n_{5}=1$. Let H be the 5 -Sylow subgroup and notice that it is normal in G. Similarly, the number of 7-Sylow subgroups of G, n_{7} is congruent to 1 modulo 7 and divides 25 so $n_{7}=1$. Let K be the 7 -Sylow subgroup and again notice that it is normal. Since the sizes of H and K are co-prime, $H \cap K=\{e\}$. This means that $G=H K$. To see that the subgroups H and K commute with each other, choose $h \in H$ and $k \in K$ and compute $h k h^{-1} k^{-1}$. If we write it as $\left(h k h^{-1}\right) k^{-1}$ we see that this element is in K by the normality of K in G. Similarly, if we write it as $h\left(k h^{-1} k^{-1}\right)$ then by the normality of H in G, this element is in H. So $h k h^{-1} k^{-1}=e$ or $h k=k h$.
We also know that groups of size p^{2} when p is a prime are abelian so both H and K are abelian. Putting this all together we get that $G \cong H \times K$ which is abelian.
4. Show there is no simple group of order 48.

Proof Here is the proof I had in mind; I will also comment on a common proof that many people wrote up afterwards.
If we look at the number of 2-Sylow subgroups of a group G of size $48, n_{2}$ then n_{2} is conjugate to 1 modulo 2 and divides 3 . So n_{2} is 1 or 3 . If it is 1 then our group is not simple. If it is 3 then there are 3 2-Sylow subgroups $X=\left\{H_{1}, H_{2}, H_{3}\right\}$ and G acts on this set by conjugation. This action induces a homomorphism φ from G to S_{X}, the permutation group on X. The image of φ is not trivial since by the second Sylow theorem, any 2 2-Sylow subgroups are conjugate. But by the first isomorphism theorem, $G / \operatorname{ker}(\varphi) \cong \operatorname{Im}(\varphi) .|G|=48$ and $1<|\operatorname{Im}(\varphi)| \leq 6$ so $\operatorname{ker}(\varphi)$ is not G or $\{e\}$ and is a normal subgroup of G. So G is not simple.
Here is another proof which involves a little more counting: Suppose we are in the case where $n_{2}=3$ and we fix H and K two distinct 2Sylow subgroups. By a lemma from Judson, $|H K|=|H||K| /|H \cap K|$.

Now we know $|H|=|K|=16$ and $|H K| \leq 48$ so $|H \cap K| \geq 16^{2} / 48$. $H \neq K$ and $H \cap K$ is a subgroup so $|H \cap K|=8$. So $H \cap K$ has index 2 in both H and K which means that H and K are contained in the normalizer of $H \cap K$. Since $H \neq K$, this means that $N(H \cap K)$ has a subgroup of size 16 and has more than 16 elements. This means that $N(H \cap K)=G$ and we have $H \cap K$ is normal in G so G is not simple. The only thing missing is a proof that if a subgroup has index 2 then it is a normal subgroup.

Lemma: If $H \subset G$ is an index 2 subgroup then H is normal in G. Proof If $h \in H$ then $h H h^{-1}=H$. If $g \in G$ but not in H then $g H$ is disjoint from H. Similarly, $H g$ is disjoint from H. But since H has index 2 in G, these two sets must be equal i.e. $g H=H g$ or equivalently, $g H g^{-1}=H$. So H is normal in G.

This is a nice proof which uses some tricky counting. If you are going to use proofs like this, please cite where you saw them.

