Assignment 4, Math 4GR3
Due Apr. 1, uploaded to Avenue

1. There is a PID which is not a Euclidean domain. An explicit example is $Z[\theta]$ where

$$
\theta=\frac{1}{2}+\frac{\sqrt{-19}}{2}
$$

This requires some fussy work and turns out to be more than I want to put on an assignment. However, on the honour system, I ask you to look at some presentations of this online. Here is a write-up by Conan Wong who was at UBC:
www.m-hikari.com/imf/imf-2013/29-32-2013/wongIMF29-32-2013.pdf
He points to other sources in the literature. The harder part is showing that this example is a PID.
2. We will show that every field is contained in an algebraically closed field.
(a) Fix a field F and consider the set A of all polynomials in $F[x]$ which are irreducible over F. Introduce a variable x_{f} for every $f \in A$ and let I be the ideal generated by all $f\left(x_{f}\right)$ in the ring $R=F\left[x_{f}: f \in A\right]$ which is the ring of polynomials with variables x_{f} for $f \in A$. Show that I is not equal to R and then take a maximal ideal $J \subset R$ which contains I (for purists, this step requires Zorn's Lemma but just assume it; the main point is that I is a proper ideal). Note that R / J is a field and show that every polynomial over F has a root in R / J.
(b) Let $F_{0}=F$. Assume we have defined F_{n} and let F_{n+1} be defined as in part (a) starting with F_{n} in place of F. Let $K=\bigcup_{n} F_{n}$. Show that K is algebraically closed.
3. Judson, chapter 18, \# 5, 11, 19 ; chapter $22 \# 8,12,21$

