
Assignment 4, Math 4GR3
Due Apr. 1, uploaded to Avenue

1. There is a PID which is not a Euclidean domain. An explicit example
is Z[θ] where

θ =
1

2
+

√
−19

2
.

This requires some fussy work and turns out to be more than I want
to put on an assignment. However, on the honour system, I ask you to
look at some presentations of this online. Here is a write-up by Conan
Wong who was at UBC:

www.m-hikari.com/imf/imf-2013/29-32-2013/wongIMF29-32-2013.pdf

He points to other sources in the literature. The harder part is showing
that this example is a PID.

2. We will show that every field is contained in an algebraically closed
field.

(a) Fix a field F and consider the set A of all polynomials in F [x]
which are irreducible over F . Introduce a variable xf for every
f ∈ A and let I be the ideal generated by all f(xf ) in the ring
R = F [xf : f ∈ A] which is the ring of polynomials with variables
xf for f ∈ A. Show that I is not equal to R and then take
a maximal ideal J ⊂ R which contains I (for purists, this step
requires Zorn’s Lemma but just assume it; the main point is that
I is a proper ideal). Note that R/J is a field and show that every
polynomial over F has a root in R/J .

Solution: As suggested, if we show that I is a proper ideal then
we can find a field extension of F in which every irreducible poly-
nomial over F has a solution. To see that I is proper, it is enough
to show that 1 6∈ I. The general form of an element of I is

g1f1(xf1) + . . .+ gnfn(xfn)

where g1, . . . , gn ∈ R and f1, . . . , fn are irreducible over F . Such
an element can never equal 1. To see this, suppose that K is an
extension of F in which a1, . . . , an−1 are solutions of f1, . . . , fn−1

respectively. If this element was equal to 1 then if a1, . . . , an−1



were substituted for xf1 , . . . , xfn−1 we would get the equation over
K:

gn(a1, . . . , an−1, xfn)fn(xfn) = 1.

But the right-hand side of this equation is a constant and the
left-hand side is a non-trivial polynomial. So this cannot happen.
We conclude that I is proper and if J is some maximal ideal in
R which contains I then R/J is a field extension of F in which
every irreducible polynomial over F has a solution.

(b) Let F0 = F . Assume we have defined Fn and let Fn+1 be defined
as in part (a) starting with Fn in place of F . Let K =

⋃
n Fn.

Show that K is algebraically closed.

Solution: Suppose that one has a non-constant polynomial f(x)
over K. Since f has only finitely many coefficients, there is some
n such that f ’s coefficients are all in Fn. By factoring f over Fn

if necessary, we can assume that f is irreducible over Fn and by
construction, f has a solution in Fn+1. So we can solve f in K.
We conclude that K is algebraically closed.

3. Chap. 18, #5: We show that every prime element of an integral domain
R is irreducible. Suppose that p ∈ R is prime and that p = ab. Then p
divdes ab and so by primeness, p divides a or b. Without loss, assume
that a = pc. Then we have p(cb) = p. Since p 6= 0, we have cb = 1
which means that b is a unit.

4. Chap. 18, #11: Z[
√
−2] is a subring of the complex numbers and

the complex numbers is a field. So Z[
√
−2] is an integral domain. If

a+ b
√
−2 is in Z[

√
−2] and at least one of a or b is not zero then

1

a+ b
√

2
=
a− b

√
2

a2 + 2b2
.

Since a and b are integers, we have |a|, |b| ≤ a2 + 2b2. In order that
the inverse also be in Z[

√
−2], we would need |a| = a2 and b = 0 i.e.

a = ±1 and b = 0 so the only units in Z[
√
−2] are ±1. The fraction

field of Z[
√
−2] is Q[

√
−2]. Indeed since Z is a subfield of Z[

√
−2]

we must have Q in the fraction field and
√
−2 must be in the fraction

field as well. Since Q[
√
−2] is a field, it is the smallest field containing

Z[
√
−2] and hence is the fraction field.



Now let’s show that Z[
√
−2] is a Euclidean domain with valuation

ν(a+ b
√
−2) = a2 + 2b2. This is close in style to example 18.20 in the

text. It is clear that the values of ν are non-negative integers. We also
have, for a, b, c and d in Z with at least one of c or d not 0

(a+ b
√
−2)(c+ d

√
−2) = ac− 2bd+ (ad+ bc)

√
−2

and so the valuation of the product is

(ac− 2bd)2 + 2(ad+ bc)2 = a2(c2 + 2d2) + 2b2(2d2 + c2) ≤ a2 + 2b2

So ν(a+ b
√
−2) ≤ ν((a+ b

√
−2)(c+ d

√
−2)).

Finally, suppose that we are given a+b
√
−2, c+d

√
−2 ∈ Z[

√
−2], both

not zero. Then we can write

a+ b
√
−2

c+ d
√
−2

=
ac+ 2bd+ (ad+ bc)

√
−2

c2 − 2d2

and this latter expression can be written as

(m+ n
√
−2) + (s+ t

√
−2)

where m and n are integers and s, t are rational numbers of size less
than or equal to 1/2; m and n are the closest integers to the fractions
appearing above. We would then have that ν(s+ t

√
−2) ≤ 1/4+1/2 =

3/4. From this we conclude that

a+ b
√
−2 = (m+ n

√
−2)(c+ d

√
−2) + (s+ t

√
−2)(c+ d

√
−2).

Since a+ b
√
−2 and m+ n

√
−2 are both in Z[

√
−2],

(s+ t
√
−2)(c+ d

√
−2) is as well. Furthermore,

ν((s+ t
√
−2)(c+ d

√
−2)) ≤ 3

4
ν(c+ d

√
−2)

which shows that Z[
√
−2] is a Euclidean domain.

5. Chap. 18, #19 Show that if an integral domain is Artinian (satisfies
the descending chain condition) then it is Noetherian (satisfies the as-
cending chain condition). This is a bit of a trick question: the fact



is that every Artinian ring is Noetherian but this requires some ef-
fort to prove. The assumption that we have an integral domain ac-
tually gives that any Artinian integral domain is a field! Take a 6= 0
in some Artinian integral domain R and form the descending chain
R ⊇ Ra ⊇ Ra2 ⊇ . . . Ran ⊇ . . . Since R is Artinian, for some n,
Ran = Ran+1. This means that for some b ∈ R, we have ban+1 = an or
rewriting, (ba − 1)an = 0. So ba = 1 and this shows that a is a unit.
Since a was arbitrary, R is a field (and hence is Noetherian).

6. Chap. 22 #8 The two rings indicated are fields since the ideals being
quotiented by are generated by irreducible polynomials. The fields both
have size 8 and since there is only one field of size 8 up to isomorphism,
these two fields are isomorphic.

7. Chap. 22, # 12 Show that no finite field is algebraically closed. Suppose
that F is a finite field with elements a1, . . . , an. Form the polynomial

1 +
n∏

i=1

(x− ai).

This polynomial has no solution in F and so F is not algebraically
closed. (This proof is due to Euclid who didn’t know what an alge-
braically closed field was!)

8. Chap. 22, # 21 Show that the map α 7→ αp is an automorphism of
order n for GF (pn).

That it is a ring homomorphism requires noticing that

(x+ y)p = xp + yp and (xy)p = xpyp

for all x, y ∈ GF (pn) because the characteristic is p. To see that this is
an automorphism, it suffices to see that it is injective since the field is
finite. If xp = yp then again, because of the characteristic, (x− y)p = 0
which implies that x = y. Since in GF (pn), all elements satisfy xp

n
= x,

we see that the order of this automorphism is at most n. But if the
order of the automorphism is m then we would have xp

m
= x for all

x ∈ GF (pn) which would mean that xp
m − x would have at least one

root with multiplicity larger than one which is not true. So the order of
the Frobenius automorphism is n. In fact, the Frobenius automorphism



generates the automorphism group of GF (pn) and so the automorphism
group is isomorphic to Zn.


